京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用,而是存在复杂的传导机制。中介效应分析正是探究这种 “自变量→中介变量→因变量” 链式关系的核心方法,而 SPSS 作为常用的统计分析工具,为中介效应的检验提供了便捷且可靠的实现路径。本文将结合 SPSS 分析结果,系统解读中介效应的检验逻辑、关键指标及实际意义。
中介效应的本质是揭示 “自变量(X)如何通过中介变量(M)影响因变量(Y)” 的过程。当 X 对 Y 的影响一部分通过 M 传导,一部分直接作用于 Y 时,称为部分中介;若 X 对 Y 的影响完全通过 M 实现,则称为完全中介。SPSS 中常用的检验方法为逐步回归法,其核心步骤包括:
检验 X 对 Y 的总效应(模型 1:Y = cX + e₁);
检验 X 对 M 的效应(模型 2:M = aX + e₂);
检验 X 和 M 对 Y 的共同效应(模型 3:Y = c'X + bM + e₃)。
若上述三步中系数 c、a、b 均显著,且加入 M 后 c' 的显著性下降(或绝对值减小),则可初步判断存在中介效应,再通过 Sobel 检验进一步验证间接效应(a×b)的显著性。
以某 “教育投入(X)对学生成绩(Y)的影响,且学习动机(M)为中介变量” 的研究为例,SPSS 输出结果的解读需聚焦以下核心指标:
回归方程为:Y = 0.52X + 0.31(R²=0.38,F=28.67,p<0.001)。
系数 c=0.52(p<0.001)表明,教育投入对学生成绩存在显著正向总效应,即教育投入每增加 1 个单位,学生成绩平均提高 0.52 个单位。
R²=0.38 说明该模型可解释学生成绩 38% 的变异,具备一定解释力。
回归方程为:M = 0.63X + 0.25(R²=0.41,F=32.15,p<0.001)。
回归方程为:Y = 0.21X + 0.49M + 0.22(R²=0.57,F=45.32,p<0.001)。
系数 b=0.49(p<0.001)显著,表明学习动机对学生成绩存在正向影响;
系数 c'=0.21(p<0.05)仍显著,但较模型 1 中的 c=0.52 明显减小,说明教育投入对学生成绩的直接效应减弱,部分效应通过学习动机传导;
R² 从 0.38 提升至 0.57,表明加入中介变量后模型解释力显著增强,进一步支持中介效应的合理性。
Sobel 检验 Z 值 = 3.26(p=0.001),小于 0.05 的显著性水平,表明间接效应(a×b=0.63×0.49=0.3087)显著。结合模型 3 中 c' 仍显著的结果,可判定存在部分中介效应,即教育投入对学生成绩的总效应中,约 59.37%(0.3087/0.52)通过学习动机实现。
从上述分析可知,教育投入对学生成绩的影响并非单一路径:一方面,教育投入可直接提升成绩(如优质教学资源的直接作用);另一方面,更重要的是通过增强学习动机间接促进成绩提升。这一结论为教育实践提供了明确指导 —— 在增加教育投入时,需同步关注学生动机的激发(如设置个性化学习目标、优化激励机制),才能最大化投入的实际效果。
需注意的是,SPSS 逐步回归法虽操作简便,但受样本量和数据分布影响较大,若条件允许,可结合 Bootstrap 法(通过重复抽样验证间接效应)进一步提升结果的稳健性。此外,中介效应分析仅能揭示变量间的关联,无法直接证明因果关系,需结合研究设计(如实验法)和理论基础综合判断。
总之,通过 SPSS 进行中介效应分析,能够突破简单的相关性描述,深入挖掘变量间的隐性传导机制,为理论深化与实践优化提供扎实的量化依据。在解读结果时,需紧扣 “总效应 — 前置效应 — 直接 / 间接效应” 的逻辑链条,结合专业语境阐释其实际价值,方能充分发挥数据分析的决策支持作用。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05