京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为数据领域极具影响力的专业认证,CDA 数据分析师认证始终紧密贴合行业动态与前沿需求。2025 年 7 月 25 日起,CDA Level I 和 Level II 考试大纲迎来重大更新,旨在让 CDA 认证更具前瞻性、实用性与严谨性,全方位提升认证价值,深度契合个人职业能力成长轨迹。
CDA Level I 主要面向零基础入行和转行就业人员、业务岗位想提升数据能力者。此次考纲更新,大幅扩充了贴合企业实际需求的数据能力、数据分析思维板块内容。新增商业数据分析框架,助力考生构建起从数据收集、处理到分析解读的完整思维链路,更好地理解如何运用数据为商业决策提供支撑。
战略与业务数据分析、归因分析内容的加入,使考生能站在更高视角,剖析业务成果产生的原因,通过数据洞察挖掘潜在业务增长点。标签体系与用户画像内容从 Level II 下放至此,帮助考生掌握基于数据构建用户画像的实操技能,为精准营销、个性化服务等业务场景筑牢根基。
在统计学知识方面,新增参数估计内容,让考生对数据特征的推断分析能力得到进一步提升。同时,数据架构与 ETL 相关内容从 Level II 下沉,使考生初步了解数据从产生到进入分析环节的流转过程,增强数据处理实操能力。
为突出对实际操作技能的考查,考纲减少了部分理论性内容,如删除数据分析的方法论、道德与行为准则相关内容,t 分布、卡方分布、F 分布及相关分析等内容调整至 Level II。SQL 函数、数据管理与数据安全内容也调整至 Level II。此外,还增加了 Excel、BI 等表格数据工具操作的考察比例,确保考生熟练掌握基础数据处理工具,能快速上手日常数据工作。指标体系与指标体系管理内容分别单列为一章,强化考生对业务指标体系搭建与管理的认知;业务数据分析与分析图表合并为数据分析方法统一考察,促使考生将理论与实践紧密结合,提升数据可视化表达及业务分析能力。
CDA Level II 面向有一定数据分析经验,期望提升技能水平、深化专业能力的从业者。考纲更新着重打造进阶数据分析思维,引入量化策略分析框架与流程,帮助考生构建更严谨、科学的数据分析策略,为企业制定数据驱动的决策提供有力依据。
数据整合与特征处理相关内容的加入,要求考生掌握从多源数据中提取有效信息、整合清洗数据,并进行特征工程处理的能力,为后续高效建模分析奠定基础。相关系数、t 分布、卡方分布、F 分布内容从 Level I 上浮至此,加深考生对统计学知识在数据分析中应用的理解深度,使其能运用更复杂的统计方法挖掘数据规律。
决策树相关内容从 Level III 下放,拓宽考生对数据挖掘算法的掌握范畴,学会运用决策树模型进行分类、预测等分析任务。数据管理与数据安全内容从 Level I 上浮,强调数据全生命周期管理及安全防护的重要性,培养考生在实际工作中保障数据资产安全的意识与能力。
此次更新删除了标签体系与用户画像、数字化工作方法、ETL 等下放到 Level I 的内容,以及 Arima 算法等调整至 Level III 的内容,使 Level II 考纲内容更加聚焦中高级数据分析技能。同时,考纲大幅增加 Python 数据处理、可视化、建模相关代码的考察比例,明确要求考生具备扎实的 Python 编程能力,熟练运用 Python 进行数据处理、分析及建模工作,以满足企业对数据分析师日益增长的编程技能需求。此外,数据可视化与统计制图单列为一章,着重提升考生数据可视化呈现能力,使其能够将复杂的数据结果以直观、易懂的图表形式展现,助力企业高效沟通与决策。
随着考纲内容的更新,CDA Level I 和 Level II 的考试题型数量及分值也进行了相应调整。全新的题目设计进一步强化对应用能力的测试,更精准地考查考生在实际工作场景中的技能运用水平,确保认证结果与个人职业能力成长紧密相连。以 Level I 为例,调整后单选题数量为 85 题,满分 100 分,考试时长 120 分钟。在有限时间内,考生需凭借扎实的知识储备与熟练的操作技能,完成对大量实际应用问题的解答,以此全面检验其对考纲内容的掌握程度及应用能力。
对于计划参加 CDA Level I 和 Level II 考试的考生而言,面对全新考纲,需及时调整备考策略。首先,深入研读新考纲,明确各章节知识点的调整变化,梳理出重点、难点内容,制定合理的学习计划,确保备考有的放矢。在学习过程中,注重理论知识与实际操作相结合,多参与真实业务场景案例分析,通过实践加深对知识点的理解与运用。针对新增的考察内容,如 Level I 中的商业数据分析框架、Level II 中的量化策略分析框架等,可借助专业教材、在线课程、行业论坛等资源,拓宽学习渠道,加深对前沿知识的掌握。同时,加强对 Python、Excel、BI 等工具的实操练习,提升编程及数据处理能力,适应考试对应用技能的高要求。此外,积极参加模拟考试,熟悉新的题型分布与考试节奏,合理分配答题时间,提前适应考试氛围,提升应试能力。
2025 年 CDA 数据分析师考纲的更新,是顺应行业发展趋势、满足企业人才需求的重要举措。它为数据分析师人才培养树立了新标杆,为从业者职业发展提供了更清晰的成长路径。无论是初入行业的新人,还是寻求职业突破的数据领域从业者,紧跟考纲变化,提升自身专业素养与应用能力,都将在数据驱动的时代浪潮中抢占先机,为个人职业发展与行业进步贡献力量。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27