京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用户细分与预测资深经理
35-55k·15薪
岗位职责:
1. 用户细分体系构建与优化 • 主导汽车市场用户细分研究,基于人生阶段、价格敏感度、使用场景、技术偏好等维度,建立分层分类的细分模型(参考)。 • 结合新能源汽车、智能驾驶等趋势,动态调整细分策略,例如分析家庭用户对增程式技术的偏好,或年轻群体对智能座舱的需求。 • 通过多源数据(用户行为、调研、竞品分析)验证细分模型,确保细分市场的可衡量性、可达性及商业价值。
2. 用户画像与需求洞察 • 设计并执行用户画像构建流程,整合人口统计学、行为数据、心理特征等信息,输出精准的用户标签体系。 • 挖掘用户痛点与未被满足的需求,例如家庭用户对空间与续航的双重需求,或商务用户对补能效率的要求。 • 与产品、研发团队协作,将洞察转化为产品定义输入,如优化车型配置或功能设计。
3. 市场预测与趋势分析 • 开发多维度预测模型(如回归分析、时间序列模型),预测细分市场规模、增长潜力及竞争格局。 • 跟踪行业动态(如政策变化、技术突破),评估其对用户行为的影响,例如自动驾驶技术普及对用户购车决策的冲击()。 • 定期发布市场预测报告,为高层提供战略建议,如指导新能源车型的区域投放策略。
4. 跨部门协作与落地支持 • 与市场、销售、供应链团队紧密合作,将细分策略转化为可执行的营销方案(如精准广告投放、渠道优化)和生产计划。 • 为客户关系管理(CRM)系统提供细分数据支持,助力个性化服务设计(如针对高价值用户的专属权益)。 •主导外部合作项目(如与咨询公司、学术机构联合研究),引入前沿方法论与数据资源。
任职要求:
1. 专业背景与经验 • 本科及以上学历,统计学、市场营销、数据科学或汽车相关专业。 • 15 年以上汽车行业经验,8 年以上用户细分、市场分析或数据建模经验,熟悉乘用车(尤其是新能源车型)市场特性。 • 具备头部车企、咨询公司(如麦肯锡、罗兰贝格)或数据驱动型科技公司的工作经历优先。
2. 方法论与工具能力 • 精通 STP 理论、用户画像构建、A/B 测试等经典方法论,能熟练应用于汽车场景。 • 掌握机器学习算法(如聚类分析、随机森林)及预测模型,熟悉 Python/R、SQL、Tableau/Power BI 等工具。 • 了解 AI 驱动的细分技术(如大模型在用户偏好预测中的应用),跟踪行业前沿(如比亚迪璇玑 AI 大模型)。
3. 行业理解与合规意识 • 深刻理解汽车行业趋势(新能源、智能网联、共享出行),能结合技术演进调整分析框架。 • 熟悉数据隐私法规(如《汽车数据安全管理若干规定》),确保分析过程符合合规要求 4. 软性技能 • 具备结构化思维与复杂问题解决能力,能从海量数据中提炼关键洞察。 • 优秀的沟通与报告能力,擅长向非技术团队传递专业分析结论。 • 结果导向,能在高压环境下推动项目落地并达成业务目标。 加分项 • 持有 CDA 数据分析师认证或 ISO 27001 信息安全管理体系认证。 • 主导过行业标准制定或参与过高级市场研究项目。 • 具备国际化视野,熟悉全球汽车市场用户行为差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06