
用户细分与预测资深经理
35-55k·15薪
岗位职责:
1. 用户细分体系构建与优化 • 主导汽车市场用户细分研究,基于人生阶段、价格敏感度、使用场景、技术偏好等维度,建立分层分类的细分模型(参考)。 • 结合新能源汽车、智能驾驶等趋势,动态调整细分策略,例如分析家庭用户对增程式技术的偏好,或年轻群体对智能座舱的需求。 • 通过多源数据(用户行为、调研、竞品分析)验证细分模型,确保细分市场的可衡量性、可达性及商业价值。
2. 用户画像与需求洞察 • 设计并执行用户画像构建流程,整合人口统计学、行为数据、心理特征等信息,输出精准的用户标签体系。 • 挖掘用户痛点与未被满足的需求,例如家庭用户对空间与续航的双重需求,或商务用户对补能效率的要求。 • 与产品、研发团队协作,将洞察转化为产品定义输入,如优化车型配置或功能设计。
3. 市场预测与趋势分析 • 开发多维度预测模型(如回归分析、时间序列模型),预测细分市场规模、增长潜力及竞争格局。 • 跟踪行业动态(如政策变化、技术突破),评估其对用户行为的影响,例如自动驾驶技术普及对用户购车决策的冲击()。 • 定期发布市场预测报告,为高层提供战略建议,如指导新能源车型的区域投放策略。
4. 跨部门协作与落地支持 • 与市场、销售、供应链团队紧密合作,将细分策略转化为可执行的营销方案(如精准广告投放、渠道优化)和生产计划。 • 为客户关系管理(CRM)系统提供细分数据支持,助力个性化服务设计(如针对高价值用户的专属权益)。 •主导外部合作项目(如与咨询公司、学术机构联合研究),引入前沿方法论与数据资源。
任职要求:
1. 专业背景与经验 • 本科及以上学历,统计学、市场营销、数据科学或汽车相关专业。 • 15 年以上汽车行业经验,8 年以上用户细分、市场分析或数据建模经验,熟悉乘用车(尤其是新能源车型)市场特性。 • 具备头部车企、咨询公司(如麦肯锡、罗兰贝格)或数据驱动型科技公司的工作经历优先。
2. 方法论与工具能力 • 精通 STP 理论、用户画像构建、A/B 测试等经典方法论,能熟练应用于汽车场景。 • 掌握机器学习算法(如聚类分析、随机森林)及预测模型,熟悉 Python/R、SQL、Tableau/Power BI 等工具。 • 了解 AI 驱动的细分技术(如大模型在用户偏好预测中的应用),跟踪行业前沿(如比亚迪璇玑 AI 大模型)。
3. 行业理解与合规意识 • 深刻理解汽车行业趋势(新能源、智能网联、共享出行),能结合技术演进调整分析框架。 • 熟悉数据隐私法规(如《汽车数据安全管理若干规定》),确保分析过程符合合规要求 4. 软性技能 • 具备结构化思维与复杂问题解决能力,能从海量数据中提炼关键洞察。 • 优秀的沟通与报告能力,擅长向非技术团队传递专业分析结论。 • 结果导向,能在高压环境下推动项目落地并达成业务目标。 加分项 • 持有 CDA 数据分析师认证或 ISO 27001 信息安全管理体系认证。 • 主导过行业标准制定或参与过高级市场研究项目。 • 具备国际化视野,熟悉全球汽车市场用户行为差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30