
编辑:LRST
【新智元导读】中科院自动化所提出BridgeVLA模型,通过将3D输入投影为2D图像并利用2D热图进行动作预测,实现了高效且泛化的3D机器人操作学习。实验表明,BridgeVLA在仿真和真实场景中均展现出卓越的性能和数据效率,仅需3条轨迹即可在基础任务中达到96.8%的成功率。
近年来,视觉-语言-动作(VLA)模型在机器人操作任务中大放异彩,成为推动通用机器人操作的重要引擎。
但现有的VLA模型,大多只以2D信息作为输入,且需要大量的机器人数据进行微调;
反观以PerAct,RVT-2为代表的3D操作策略,通常仅需要10条轨迹就能够取得不错的效果,因此,一个很自然的想法是,是否能将现有的2D VLA升级为3D VLA,使其同时兼具2D VLA的效果以及3D操作策略的效率?
中科院自动化所的研究人员提出的BridgeVLA给出了肯定的回答!
论文链接: https://www.arxiv.org/abs/2506.07961
项目主页: https://bridgevla.github.io/home_page.html
实验表明,BridgeVLA仅需采集3条轨迹就能在基础设置中实现96.8%的任务成功率。
在多种泛化性设置中,比如未见过的干扰物、高度、光照、物体种类以及未见过的物体技能组合等,BridgeVLA展现出碾压式的性能,相较于基线模型取得了32%的性能提升。
在仿真中,BridgeVLA屠榜了主流3D机器人操作基准,在RLBench、COLOSSEUM、GemBench等三个仿真基准中均取得了最先进的性能。
图1. BridgeVLA统一输入与输出的方案,兼顾泛化性与高效性
近来,OpenVLA、pi0等2D VLA架构在机器人领域取得了广泛关注,它们借助预训练多模态大模型强大的表征能力,将自然语言指令、图像观测与动作预测串联在一起,展现出很强的泛化能力。
然而,这类型2D VLA所带来的代价同样很大:为了让模型真正学会每个任务,往往需要上百条专家演示。这其中的数据收集、清洗与标注需要高昂的人力成本,很难在更大规模的工业场景下落地。
与此同时,研究者们发现,如果直接在3D空间中学习动作策略,凭借3D输入蕴含的显式空间结构信息,模型只需极少的轨迹就能掌握操作技能,具有很高的数据效率。
因此,理论上来讲,将3D信息和VLA相结合是有可能构造出一个高性能且高效率的3D VLA模型的。然而,当前已有的3D VLA模型却并未实现上述期待。
BridgeVLA的研究团队发现,这背后有两个方面的原因:
1)这些方案输出形式割裂。大多数3D VLA方法把动作输出建模为 token 序列,这样的做法割裂了动作输出与观测输入之间的空间对应关系,难以充分利用三维几何信息。
2)这些方案的输入和预训练多模态大模型的输入分布不匹配。预训练VLM是以2D 图像作为输入的,而这与微调阶段的3D 输入分布差异巨大,导致直接迁移效果不佳。
基于这些观察,BridgeVLA的研究团队提出:如果将3D输入与动作输出都统一到2D空间,同时将预训练阶段的输入和输出也统一到2D空间的话,将可以同时继承2D VLA的泛化能力与3D操作策略的数据效率。
图2. BridgeVLA 2D热度图预训练与3D动作微调结构图
BridgeVLA的训练流程主要分为两个阶段:首先是2D 热度图预训练,然后是3D动作微调。预训练阶段主要用于提升模型的空间感知能力,使其具备从图像和语言描述中精准定位目标区域的能力;而微调阶段则通过三视角图像进行动作预测,完成具体的 3D 操作策略学习。
传统的预训练多模态大模型在预训练阶段主要通过预测token 序列来完成分类或生成任务,而这样的token序列并不具备任何的空间结构。
为了使模型具备空间定位能力,BridgeVLA 设计了一种热度图预训练方式,训练模型根据文本指令预测关于目标对象位置的概率热度图,并使用了 RoboPoint 中的目标检测数据集进行预训练。
在模型结构上,BridgeVLA使用了由SigLIP视觉编码器和Gemma Transformer构成的PaliGemma作为VLM主干。
预训练时,模型的输入为图像与其对应的文本描述(如图中红色的杯子在哪),然后通过PaliGemma提取特征,最后使用一个可学习的上采样模块生成与原图同分辨率的热度图。
整个过程采用交叉熵损失进行监督训练。这种预训练策略使VLM获得了空间感知能力,能够根据语言描述在图像中精准定位目标区域,为后续下游3D操作策略学习提供帮助。
在微调阶段,模型的目标是根据3D点云和语言指令输出合理的机器人动作。
具体来说,BridgeVLA首先从顶部、正面和右侧三个方向将点云渲染为三幅2D图像,并将其作为输入送入经过重新预训练的 VLM 主干网络。模型随后会为每个视角生成一张2D 热度图。
为了保持微调与预训练的一致性,VLM 的输入中不包含机器人状态或其他非视觉信息,从而避免输入分布偏移。通过结合深度图和相机参数,三个热度图可以被反投影,从而得到末端执行器的位置估计。
末端执行器的旋转姿态和夹爪开闭状态则通过额外引入的MLP进行预测。
BridgeVLA在多个主流3D操作榜单上都取得了最先进的性能。在RLBench中成功率达88.2%,相较于基准模型提升了6.8%
而在环境出现颜色、材质、物体大小等12种干扰的COLOSSEUM环境中相较于之前SoTA方法提升了7.3%,在同样极具挑战的GemBench环境中,即使面对全新位置、全新物体的考验,BridgeVLA也取得了最佳的50%的成功率。
这些实验都证明了BridgeVLA具备很强的泛化能力,充分利用了预训练多模态模型中蕴含的丰富视觉与语言先验知识。
图3. BridgeVLA 在RLBench上的实验结果
图4. BridgeVLA 在COLOSSEUM上的实验结果
图5. BridgeVLA 在GemBench上的实验结果
BridgeVLA同时在真机实验中进行了大规模实验,BridgeVLA可以很好的克服干扰物、不同高度、不同光照条件、不同背景的影响,同时也具有一定的组合泛化能力、和全新物体的泛化能力,这都得益于预训练骨干网络中蕴含的先验特征。
同时BridgeVLA也证明了其极高的数据效率,仅仅使用3条轨迹就可以达到96.8%的基础任务成功率,几乎与使用10条轨迹训练的版本持平,结果表明BridgeVLA不仅泛化能力强,而且对数据要求极低,非常适合在真实机器人系统中部署与扩展。
图6. BridgeVLA 在真机实验上的实验结果
BridgeVLA通过统一预训练的输入输出到二维图像空间,建立起了一个高性能且高数据效率的3D VLA新范式。
可以预见,未来将有更多类似的探索推动 VLA 模型持续演进,迈向新的高度。
参考资料:
https://bridgevla.github.io
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20