
【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。
现在的大模型基本都具备零样本泛化能力,但要在真实场景中做特定的适配,还是得花好几个小时来对模型进行微调。
即便是像LoRA这样的参数高效方法,也只能缓解而不能消除每个任务所需的微调成本。
刚刚,包括尤洋教授在内的来自新加坡国立大学、得克萨斯大学奥斯汀分校等机构的研究人员,提出了一种全新的「拖拽式大语言模型」——Drag-and-Drop LLMs!
DnD是一种基于提示词的参数生成器,能够对LLM进行无需训练的自适应微调。
通过一个轻量级文本编码器与一个级联超卷积解码器的组合,DnD能在数秒内,仅根据无标签的任务提示词,生成针对该任务的LoRA权重矩阵。
显然,对于那些需要快速实现模型专业化的场景,DnD可以提供一种相较于传统微调方法更强大、灵活且高效的替代方案。
通过观察,研究人员发现,LoRA适配器无非是其训练数据的一个函数:梯度下降会将基础权重「拖拽」至一个特定任务的最优状态。
如果能够直接学习从提示到权重的映射,那么就可以完全绕过梯度下降过程。
DnD通过两个核心步骤获得「拖拽」能力:准备训练数据(左上)与训练参数生成器(右上)。
在准备数据时,将模型参数(权重)与特定数据集的条件(提示词)进行显式配对。 在训练时,DnD模型将条件作为输入来生成参数,并使用原始的LoRA参数作为监督信号进行学习。 基于这些洞见,团队提出了「拖拽式大语言模型」,它无需微调即可生成任务专属的权重。
团队首先在多个不同数据集上分别训练并保存相应的LoRA适配器。
为了赋予模型「拖拽」的能力,团队将这些数据集的提示词与收集到的LoRA权重进行随机配对,构成DnD模型的训练数据——即「提示词-参数」对。
参数生成器是一个由级联卷积块构成的解码器。
参数生成器的模块细节如下:每个超卷积块包含三个超卷积模块,用于在不同维度上提取并融合特征信息。
训练时,团队采用一个现成的文本编码器提取提示词的嵌入向量,并将其输入生成器。
生成器会预测出模型权重,团队利用其与真实LoRA权重之间的均方误差(MSE)损失来对其进行优化。
在推理阶段,团队只需将来自全新数据集(训练中未见过)的提示词输入DnD,仅需一次前向传播,即可获得为该任务量身定制的参数。
零样本学习效果
在新的(测试)数据集上的泛化能力。
在所有未曾见过的数据集上,DnD在准确率上都显著超越了那些用于训练的LoRA模型。
DnD能为数学、代码和多模态问答等更复杂的任务生成参数。
在这些任务上依然展现出强大的零样本学习能力。
DnD在多种任务上超越了基座LLM,展现出显著的「拖拽」增强效果。
DnD能够很好地扩展至更大的7B基座模型,并在更复杂的LiveCodeBench基准测试中保持强劲性能。
通过利用已微调的LoRA作为训练数据,DnD成功地在输入提示词与模型参数之间建立了联系。
团队向DnD输入其训练阶段从未见过的数据集提示词,让它为这些新任务直接生成参数,以此来检验其零样本学习能力。
DnD在权重空间中生成的参数与原始参数分布接近,并且在性能上表现良好。
实验结果表明,在零样本测试集上,团队的方法相较于训练所用的LoRA模型的平均性能,取得了惊人的提升,并且能够很好地泛化到多种真实世界任务和不同尺寸的LLM。
为了进一步展示DnD的强大能力,团队将其与全量样本微调(full-shot tuning)、少样本学习(few-shot)以及上下文学习(in-context learning)进行了对比。
令人惊讶的是,DnD的性能超越了LoRA全量微调的效果,同时速度快了2500倍。
虽然经过更多轮次的迭代,全量微调的性能会超过DnD,但其代价是高达12000倍的推理延迟。
此外,在样本数少于256个时,DnD的性能稳定地优于少样本学习和上下文学习。
尤其值得注意的是,少样本学习和上下文学习都需要依赖带标签的答案,而DnD仅仅需要无标签的提示词。
DnD能够达到与全量样本相当甚至更优的性能,同时速度提高了2500-12000倍
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08