京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据的权重,动态地计算平均值,帮助我们更准确地分析数据趋势和特征。Power Query 作为 Excel 中强大的数据处理工具,为我们实现移动加权平均提供了便捷的途径。下面将详细介绍如何在 Power Query 中完成移动加权平均的计算。
移动加权平均,是指每次进货的成本加上原有库存存货的成本,除以每次进货数量加上原有库存存货的数量,据以计算加权平均单位成本,作为在下次进货前计算各次发出存货成本依据的一种方法。在 Power Query 的场景下,我们可以将其拓展应用到各类数值型数据的分析中,通过设定合适的权重和移动窗口,动态计算数据的加权平均值,以便更好地观察数据的变化趋势,剔除随机波动的影响。
假设我们有一份销售数据,包含 “日期”“产品名称”“销售数量”“销售单价” 等列,我们需要根据销售数量作为权重,计算销售单价的移动加权平均。首先,在 Excel 中打开 “数据” 选项卡,点击 “获取数据”,选择数据的来源(如 CSV 文件、数据库等),将数据导入到 Power Query 编辑器中。
在 Power Query 编辑器中,我们需要先对数据按照 “产品名称” 和 “日期” 进行分组和排序。选中 “产品名称” 和 “日期” 列,点击 “开始” 选项卡中的 “分组依据” 按钮。在弹出的 “分组依据” 对话框中,选择 “添加聚合”,将 “销售数量” 和 “销售单价” 分别进行求和聚合,得到每个产品在不同日期的总销售数量和总销售金额。完成分组聚合后,确保数据按照 “产品名称” 和 “日期” 的顺序排列,以便后续计算移动加权平均。对应的 M 代码如下:
let
Source = Excel.CurrentWorkbook(){[Name="表1"]}[Content],
#"Changed Type" = Table.TransformColumnTypes(Source,{{"日期", type date}, {"产品名称", type text}, {"销售数量", Int64.Type}, {"销售单价", type number}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"产品名称", "日期"}, {
{"总销售数量", each List.Sum([销售数量])},
{"总销售金额", each List.Sum(List.Transform([销售数量], each _ * [销售单价]))}
}),
#"Sorted Rows" = Table.Sort(#"Grouped Rows",{{"产品名称", Order.Ascending}, {"日期", Order.Ascending}})
in
#"Sorted Rows"
接下来,我们使用自定义函数来计算移动加权平均。在 Power Query 编辑器的 “添加列” 选项卡中,点击 “自定义列”。在弹出的 “自定义列” 对话框中,输入以下 M 代码来定义一个计算移动加权平均的函数:
(rows, windowSize) =>
let
filteredRows = Table.FirstN(rows, windowSize),
totalWeight = List.Sum(filteredRows[总销售数量]),
weightedSum = List.Sum(List.Transform(filteredRows, each [总销售金额] / [总销售数量] * [总销售数量]))
in
weightedSum / totalWeight
上述代码定义了一个函数,它接受两个参数:rows(表示一组数据行)和windowSize(表示移动窗口的大小)。函数内部首先筛选出指定窗口大小的数据行,然后计算这些数据行的总权重(总销售数量之和)以及加权总和(销售单价乘以销售数量之和),最后返回移动加权平均值。 定义好函数后,在 “自定义列” 对话框中,输入调用该函数的表达式来计算移动加权平均列。假设我们的移动窗口大小为 3,表达式如下:
= Table.AddColumn(#"Sorted Rows", "移动加权平均", each #"移动加权平均函数"([_], 3))
其中"移动加权平均函数"是我们刚刚定义的函数名称,3表示移动窗口大小,[_]表示当前行所在的分组数据。
完成移动加权平均列的计算后,我们可以根据需要对数据进行进一步的整理,如删除不需要的列、更改数据类型等。最后,点击 “开始” 选项卡中的 “关闭并上载” 按钮,将处理好的数据加载回 Excel 工作表中,以便进行后续的分析和可视化操作。
移动窗口大小的选择:移动窗口大小的设置直接影响移动加权平均的结果。窗口过小,可能无法有效平滑数据波动;窗口过大,则可能导致数据滞后,无法及时反映数据的变化趋势。需要根据具体的数据特点和分析目的来合理选择窗口大小。
数据完整性和准确性:在进行移动加权平均计算前,要确保数据的完整性和准确性。缺失值或错误数据可能会导致计算结果出现偏差,影响分析结论。如果存在缺失值,可以使用 Power Query 的 “填充” 功能进行处理;对于错误数据,需要进行修正或删除。
性能问题:当数据量较大时,移动加权平均的计算可能会消耗较多的系统资源和时间。可以考虑对数据进行适当的筛选和聚合,减少不必要的计算量,提高计算效率。
通过以上步骤,我们就可以在 Power Query 中实现移动加权平均的计算,利用这一强大的数据处理功能,更好地挖掘数据背后的信息,为数据分析和决策提供有力支持。如果你在实际操作过程中遇到其他问题或有进一步的需求,欢迎随时交流。
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09