京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分布无严格要求、能有效识别数据趋势与突变点的特性,成为环境科学、气象学、经济学等领域的重要分析工具。而借助 SPSS 这一功能强大的统计分析软件,MK 检验的操作变得更加便捷高效。接下来,我们将深入探讨 SPSS 中 MK 检验的原理、操作步骤、实际应用以及相关注意事项。
Mann-Kendall 检验是一种非参数统计检验方法,它不依赖于数据的具体分布形式,适用于各种类型的数据,包括不满足正态分布的数据。该检验主要用于分析时间序列数据的趋势变化以及检测数据序列中的突变点。
其核心思想基于数据的秩次关系。在时间序列x1,x2,...,xn中,对于任意两个数据点xi和xj(i<j),若i<xj,则记为1;若i>xj,则记为−1;若i=xj,则记为0。通过计算这些秩次关系的统计量,构建检验统计量Z,并与给定的显著性水平(如 0.05)下的临界值进行比较,判断数据是否存在显著趋势。若∣Z∣>Zα/2,则拒绝原假设,认为数据存在显著趋势;若∣Z∣≤Zα/2,则接受原假设,认为数据不存在显著趋势。
在突变点检测方面,通过构建正序列和逆序列的统计量曲线,观察两条曲线的交点,交点对应的时间点即为可能的突变点。
数据准备:将时间序列数据导入 SPSS 软件中,确保数据包含时间变量和对应的观测变量,且数据排列整齐,无缺失值或异常值干扰(如有缺失值,需提前进行合理处理,如删除缺失行或使用插补法填充)。
选择分析方法:在 SPSS 菜单栏中依次点击 “分析” - “非参数检验” - “旧对话框” - “趋势”,打开趋势分析对话框。
变量设置:将观测变量选入 “检验变量列表”,将时间变量选入 “分组变量”,并定义分组变量的范围(如时间序列的起始和结束时间)。
检验选项设置:在 “检验类型” 中选择 “Kendall 的协同系数”(此选项可用于趋势分析),若要进行突变点检测,还需在后续通过编程或特定插件辅助完成。
运行分析:点击 “确定” 按钮,SPSS 将自动计算相关统计量并输出分析结果。结果中主要关注的指标是检验统计量Z值及其对应的显著性水平p值,若p<0.05,则表明数据存在显著趋势。
以某地区近 30 年的年降水量数据为例,利用 SPSS 进行 Mann-Kendall 检验。将年降水量数据录入 SPSS 后,按照上述操作步骤进行分析,得到检验统计量Z=−2.35,显著性水平p=0.019<0.05,这表明该地区近 30 年的年降水量呈现显著的下降趋势。
进一步结合突变点检测(可借助 Python 与 SPSS 联动或其他扩展插件实现),发现降水量在第 15 年左右出现明显突变,降水量下降趋势在此之后更为显著。这一结果为当地水资源管理、农业生产规划等提供了重要的决策依据,例如相关部门可以提前制定节水措施,调整农作物种植结构以应对降水量减少的情况。
优势 对数据分布要求宽松:无需数据满足正态分布等特定条件,适用于各种类型的时间序列数据,在处理现实中复杂多变的数据时具有很强的适应性。
趋势和突变点检测能力强:不仅能够准确判断数据的趋势方向(上升、下降或无趋势),还能有效检测数据序列中的突变点,帮助我们深入了解数据的变化特征。
计算相对简单:相较于一些复杂的参数检验方法,Mann-Kendall 检验的计算过程相对简单,在 SPSS 等软件的辅助下,操作便捷高效。
局限性
对微弱趋势的敏感性不足:当数据中的趋势较为微弱时,Mann-Kendall 检验可能无法准确识别,容易出现漏判的情况。
突变点检测的辅助需求:在 SPSS 原生功能中,突变点检测的操作相对复杂,通常需要借助其他工具或编程辅助完成,增加了分析的难度和门槛。
无法确定趋势的具体函数形式:该检验只能判断数据是否存在趋势以及趋势的方向,无法给出趋势变化的具体函数表达式,不利于对数据变化进行精确建模。
Mann-Kendall 检验在 SPSS 中的应用为我们分析数据的趋势和突变提供了有力的工具。通过掌握其原理、熟练操作步骤,并结合实际案例进行分析,我们能够更好地利用这一方法挖掘数据背后的信息,为各领域的研究和决策提供科学依据。同时,我们也应清楚认识到其局限性,合理选择和结合其他分析方法,以获得更全面、准确的分析结果。
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20