
行业研究员(护肤美妆赛道)
20-30k
深圳-南山区侨城一号广场
岗位职责
(一)行业与市场研究 深耕消费品行业,重点聚焦化妆品领域,定期开展市场扫描,涵盖赛道规模、增长趋势、政策监管、渠道变迁等,输出行业研究报告,为战略决策提供依据; 跟踪竞争对手动态,拆解产品策略(如配方创新、营销打法)、渠道布局、用户运营模式,形成竞品分析矩阵,提炼可借鉴经验与差异化机会; 研判市场趋势,结合宏观经济、消费习惯变化(如成分党、功效护肤流行),预判需求走向,为新品开发、资源投入提供方向建议。
(二)消费者行为洞察 设计消费者调研方案(线上问卷、焦点小组访谈等),深入挖掘目标客群(如 Z 世代、功效需求人群)的偏好、痛点、购买决策因素; 分析消费数据(购买频次、客单价、复购率等),结合行为观察,输出用户画像与需求报告,反推产品迭代、营销触达策略。
(三)专项研究与策略支持 牵头或参与化妆品等领域专项研究(如新品类可行性、原料创新应用价值),联动研发、市场团队,输出包含 “机会判断 + 落地路径” 的策略方案; 定期向业务部门分享行业洞察,参与头脑风暴、项目评审,为产品开发、市场推广提供专业视角支持。
岗位要求
(一)经验与背景 行业经验:3 年以上消费品行业研究经验,有化妆品、美妆赛道深度研究经历者优先; 项目经历:主导或参与过完整行业研究、竞品分析、消费者调研项目,能独立输出高质量报告。
(二)能力与技能 研究分析:熟练掌握市场研究方法(PEST、波特五力等),具备数据挖掘、逻辑推导能力,能从零散信息中提炼核心结论; 工具应用:精通 Excel(函数、数据透视表)、SPSS 等数据分析工具,会用 Python/R 做基础数据处理者加分; 沟通协作:擅长跨部门协同(研发、市场、销售),能清晰传递专业观点,推动研究成果落地; 学习创新:对消费品行业变化敏感,主动关注前沿趋势(如 AI 美妆、可持续成分),快速吸收新知识并转化应用。
工作环境与福利 团队氛围:
扁平协作,与行业专家、业务骨干深度交流,接触前沿消费趋势; 成长空间:定期参与行业峰会、培训,支持自主选题研究,纵向深耕或横向拓展研究领域; 薪资福利:匹配行业经验的竞争力薪酬,含绩效奖金;五险一金、带薪年假、弹性工作等基础福利齐全。 六、加分项 持有市场研究、数据分析相关证书(如 CMRA、CDA); 有化妆品品牌方、咨询公司、调研机构工作背景; 长期关注美妆垂类媒体(如美丽修行、Cosmetic Design),积累行业私域资源。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30