
CDA(Certified Data Analyst),是指在金融、电信、零售、制造、能源、医疗医药、旅游、咨询等行业从事数据的采集、清洗、处理、分析并能制作业务报告、提供数字化决策的新型数据人才1。CDA 证书是数据分析领域专业知识与技能的标准象征,作为数字化人才的专属身份标识,已成为众多企业人才招聘与任用的重要参考依据。
等级 | 核心能力 | 适用人群及岗位[2] |
---|---|---|
CDA LEVEL Ⅰ | 业务数据分析 / 可视化/描述性统计/ 基础业务报告制作 |
1. 零基础就业转行、应届毕业生 2. 产品、运营、营销等业务岗与研发、技术岗在职者 3. 企业创始人、经理人、管理咨询类岗位从业者 |
CDA LEVEL Ⅱ | Python/SQL/概率论数理统计 / 多软件运用 / 数据采集预处理 / 推断性分析 / 业务策略优化 |
1. 产品、运营、营销等业务部门与研发、中台、技术类部门数据分析相关岗位在职者 2. 数字化转型企业创始人与数字化流程中相关负责人 |
CDA LEVEL Ⅲ | 数据挖掘机器学习 / 高级软件技术 / 高级数据处理 / 复杂模型构建 / 深度业务决策 |
1. 业务岗与技术岗从事数据分析、数据挖掘、机器学习等技术在职提升者 2. 从事算法科学、深度学习等工作的科研人员、分析师与工程师等 |
对个人的职业发展助力
CDA认证为数据人才提供了清晰的职业成长路径。从一级的基础数据分析能力培养,到二级的业务与技术融合提升,再到三级的专业数据挖掘技能精通,逐步提升数据人才的专业素养和市场竞争力。持有CDA认证的人员,在就业市场上更具优势,能够获得更多的职业机会和更高的薪资待遇,也有助于个人在数据领域不断深耕,实现职业目标。3
对企业的数字化转型支持
企业在数字化转型过程中,需要大量具备专业数据分析能力的数据人才。CDA认证培养的数据人才能够满足企业在业务现状描述、问题归因分析和个体行为预测等方面的需求,帮助企业深入挖掘数据价值,洞察市场变化和趋势,降低风险,提高决策效率,进而提升企业的核心竞争力,推动企业数字化转型的顺利进行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10