京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这里面不仅要用到python,还要用到数据分析的方法论,对于只用过excel的同学来说,这无疑是太难了,事到临头,再重头去学,无疑是个很漫长的过程,而我正好又懒癌复发了……。

不要急,下面就给大家介绍一款工具,可以通过自然语言的方式,把你的分析需求告诉它,它就能帮你实现代码的生成,数据分析方法的运用。它就是字节跳动最新发布的一款工具—Trae。
Trae是一款AI与传统IDE结合的工具,可以根据使用自然语言提出的需求,自动转化成代码后执行,实现需求-结果之间的零技术门槛的跨越。

下面我们先介绍一下它的安装部署


1)请先安装python解释器及开发工具后,再安装配置trae,因为单独安装python解释器和开发工具,过程比较繁琐,建议安装anaconda进行傻瓜式安装,具体可参考如下链接
anaconda安装过程:https://blog.csdn.net/yoggieCDA/article/details/147205853
2)跳过注册过程

3)下载anaconda安装包

4)参考如下链接,进行anaconda安装:
https://blog.csdn.net/yoggieCDA/article/details/147205853
1)在Builder模式下,输入提示词:配置python环境。

2)选择一个文件夹,以用来存放项目文件

3)配置虚拟环境

4)如出现以下提示,请按标识进行操作,选择安装好的python解释器



5)在提示词输入框中,输入:“激活虚拟环境”并回车执行


6)安装python开发工具及数据分析相关的包

7)环境配置成功

完成配置成功以后,让我们小试牛刀吧,
下面我们将用两个案例来带领大家快速上手这款工具。
数据分析工作中,常常会遇到多表合并为一张表的情况,如历年的销售数据,各月份的销售数据等,以往多张表的合并,要在python中实现,需要大家编写代码,有一定的编程基础。
现有如下几张数据表,记录了不同年份,不同区域市场的销售金额及利润情况,现需要多张表合并为一张表。

角色:我是一名数据分析师,经常使用python做数据整合、清理和可视化问题。
背景描述:本文件夹目录下有两个子文件夹,分别是“原始数据”子文件夹和“整合数据”子文件夹。
任务:
注意事项:
执行结果:

从这个案例我们可以看出数据分析的很多环节,都可以用AI来提高效率,节省你宝贵的时间和精力。大家不妨先思考这样一个问题:平时你做数据分析流程步骤是怎样的?在我看来,数据分析基本有这样5个环节:

数据分析是从明确问题和理解数据开始的,接着对数据清洗,比如说处理缺失值、调整数据格式等等,然后使用合适的数据分析方法,对数据展开分析,最后将数据结果进行可视化,直观的展示数据分析的结论这就是一套完整的数据分析工作流程,那么,现在AI来了以后,数据分析的这5个环节发生变化了吗?
并没有,可能分析的手法变了,比如过去清洗数据,要熟练的掌握Excel各种函数,现在可以通过提示词让AI来辅助完成。但是,数据分析的这5个环节一个也没少,所以大家不要只热衷于追逐新冒出来的各种AI工具,关键是要透彻掌握数据分析的底层逻辑。CDA数据分析师一级里讲解了数据分析方法、基本的流程、业务数据分析等。
再举个例子,某行信用卡中心需根据资金使用情况,进行资金使用量的预测,以提前准备适当的现金,以往的资金预测需要使用python进行,会用到建模等方法,现有了AI,请尝试使用AI辅助相应技术的实现。

提示词:
我是一名数据分析师,经常使用python做数据整合、清理、可视化、时间序列分析、数据挖掘的问题。
背景描述:本文件夹目录下有一个“信用卡消费额_含节日.xlsx”文件。
任务:
执行结果

《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20