京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这里面不仅要用到python,还要用到数据分析的方法论,对于只用过excel的同学来说,这无疑是太难了,事到临头,再重头去学,无疑是个很漫长的过程,而我正好又懒癌复发了……。

不要急,下面就给大家介绍一款工具,可以通过自然语言的方式,把你的分析需求告诉它,它就能帮你实现代码的生成,数据分析方法的运用。它就是字节跳动最新发布的一款工具—Trae。
Trae是一款AI与传统IDE结合的工具,可以根据使用自然语言提出的需求,自动转化成代码后执行,实现需求-结果之间的零技术门槛的跨越。

下面我们先介绍一下它的安装部署


1)请先安装python解释器及开发工具后,再安装配置trae,因为单独安装python解释器和开发工具,过程比较繁琐,建议安装anaconda进行傻瓜式安装,具体可参考如下链接
anaconda安装过程:https://blog.csdn.net/yoggieCDA/article/details/147205853
2)跳过注册过程

3)下载anaconda安装包

4)参考如下链接,进行anaconda安装:
https://blog.csdn.net/yoggieCDA/article/details/147205853
1)在Builder模式下,输入提示词:配置python环境。

2)选择一个文件夹,以用来存放项目文件

3)配置虚拟环境

4)如出现以下提示,请按标识进行操作,选择安装好的python解释器



5)在提示词输入框中,输入:“激活虚拟环境”并回车执行


6)安装python开发工具及数据分析相关的包

7)环境配置成功

完成配置成功以后,让我们小试牛刀吧,
下面我们将用两个案例来带领大家快速上手这款工具。
数据分析工作中,常常会遇到多表合并为一张表的情况,如历年的销售数据,各月份的销售数据等,以往多张表的合并,要在python中实现,需要大家编写代码,有一定的编程基础。
现有如下几张数据表,记录了不同年份,不同区域市场的销售金额及利润情况,现需要多张表合并为一张表。

角色:我是一名数据分析师,经常使用python做数据整合、清理和可视化问题。
背景描述:本文件夹目录下有两个子文件夹,分别是“原始数据”子文件夹和“整合数据”子文件夹。
任务:
注意事项:
执行结果:

从这个案例我们可以看出数据分析的很多环节,都可以用AI来提高效率,节省你宝贵的时间和精力。大家不妨先思考这样一个问题:平时你做数据分析流程步骤是怎样的?在我看来,数据分析基本有这样5个环节:

数据分析是从明确问题和理解数据开始的,接着对数据清洗,比如说处理缺失值、调整数据格式等等,然后使用合适的数据分析方法,对数据展开分析,最后将数据结果进行可视化,直观的展示数据分析的结论这就是一套完整的数据分析工作流程,那么,现在AI来了以后,数据分析的这5个环节发生变化了吗?
并没有,可能分析的手法变了,比如过去清洗数据,要熟练的掌握Excel各种函数,现在可以通过提示词让AI来辅助完成。但是,数据分析的这5个环节一个也没少,所以大家不要只热衷于追逐新冒出来的各种AI工具,关键是要透彻掌握数据分析的底层逻辑。CDA数据分析师一级里讲解了数据分析方法、基本的流程、业务数据分析等。
再举个例子,某行信用卡中心需根据资金使用情况,进行资金使用量的预测,以提前准备适当的现金,以往的资金预测需要使用python进行,会用到建模等方法,现有了AI,请尝试使用AI辅助相应技术的实现。

提示词:
我是一名数据分析师,经常使用python做数据整合、清理、可视化、时间序列分析、数据挖掘的问题。
背景描述:本文件夹目录下有一个“信用卡消费额_含节日.xlsx”文件。
任务:
执行结果

《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06