
2025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条。
很多数据分析师有点慌,担心数据分析师是不是要失业了,上答案:数据分析师的春天来了!
通过使用AI工具我们可以很便捷的做一些个数据清洗啊,比如说做excel的数据清洗,数据分割。过去需要通过编程,比如VBA来实现。这些操作真的很烦人,现在就很简单了。
作为一个老的数据分析师,曾经也是没日没夜的坐在电脑前写SQL、Python,这是非常郁闷的一件事情啊。其实数据分析并不应该是个编程的工具人,应该做一些更有创造性的工作,比如发现业务当中遇到的问题、做问题的归因分析、寻找解决问题的方法。过去大家认为数据分析师就是处理数据、写VBA、SQL和Python,那其实是是一个固化的认识。
下面是一个使用国内某大厂的智能体做的一份自动化分析报告的示例,只要我们把报告框架设定好,把提示词调整好,那报告就直接生成了。
视频:https://mp.weixin.qq.com/s/zssVzuh1AIXZJZC-FMuE5w
咱们看一下效果,这个工具虽然不算完美,但是可以极大的解放劳动力。
再强调一下,AI来了,数据分析岗位不会被替代,下面列出了企业员工在能力方面的6个层面,大家可以看看自己处于哪个层面上。如果所处的层面比较低,那就完全没必要焦虑了,因为路还很长,AI只会替代低级的操作类的工作内容,高层次的工作还是需要人来做。
也就是了解规则,至少保证工作不犯错。
可以想办法提高工作效率
可以制定能够产生更好效果的策略
对企业内部和竞品的单个产品和产品组合有深入的了解,制定全方位的客户解决方案。
可以分析市场的需求变化趋势,不断迭代产品和创新
可以深入洞察社会发展的规律,获得竞争先机。
作为数据分析师人才的培养机构,我们也经常思考如下问题:
基于企业对数据分析岗位人员的要求,CDA认证体系在去年做了全面的调整,目的就是提升认证数据分析师的能力层次,适应外部环境的变化。以下是CDA一级的内容框架。
以上框架形成了完备的数据分析内容、方法和流程。便于数据分析的能力提升。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10