
一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的本质。
任何的技巧都有元规则,deepseek 元规则是什么?
就是你直接问他,我要想用好你,应该怎么做?
一个牛逼的软件,如果连这个问题都没有办法回答,那他就不配叫牛逼两个字。
一个以深度逻辑擅长的中文 AI,如果连这个问题都没有办法很好的回答,那他其他的回答就没有任何的意义。
所以不管你用 Deepseek 做什么事情,加上这句话就好。
大道至简。
自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧:
自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧:
目标:掌握基础语法,能写简单脚本。
核心语法(3-5天):
变量与数据类型:数字、字符串、列表、字典、布尔值。
流程控制:if/else 条件判断、for/while 循环。
函数:定义函数、参数传递、返回值。
文件操作:读写文本文件(open() 函数)。
目标:掌握常用库,能开发完整项目。
重点库学习:
数据处理:NumPy(数组计算)、Pandas(数据分析)。
自动化与爬虫:requests(HTTP请求)、BeautifulSoup/Scrapy(网页解析)。
可视化:Matplotlib/Seaborn(图表绘制)。
Web开发:Flask/Django(选一个框架学习基础)。
项目驱动学习:
数据分析:用 Pandas 分析股票数据或电影评分数据集(Kaggle 找数据集)。
自动化脚本:批量重命名文件、自动发送邮件。
Web应用:用 Flask 搭建一个博客或待办事项应用。
学习方法知道后,大家最大的困难其实是如何启动?毕竟手机太好玩了,如何告别拖延症,在职党每天利用碎片化时间开始学习。如果你也有这样的问题,建议加入一个社群,大家一起学习。
为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让学习在有序的节奏中稳步推进。按既定时间节奏打卡,能帮助我们养成规律的学习习惯,克服拖延与惰性;能构建起系统的学习框架,避免学习的盲目与无序;更能营造出积极的学习氛围,激励自己不断前行。以组队学习的形式,与志同道合的伙伴们携手共进,团队的力量将激发你的学习动力,让学习不再是孤独的旅程。大家相互监督、彼此鼓励,共同提升学习效果,一起精进自己在数据分析专业领域的技能。
报名截止:02月13日(星期四)
开营仪式:02月13日(星期四)晚
打卡开始:02月13日(星期四)
首次打卡:02月18日(星期二)
结营仪式:03月17日(星期二)
重要的事情说三遍,本期所有打卡交流群,不承诺答疑!不承诺答疑!不承诺答疑! 只有群友互帮互助,互帮互助,信息共享!全靠大家用爱发电,如果你的问题没有得到解答,请多渠道上下而求索 ~
本期设置了两个专题方向,大家可以依据个人时间和学习计划灵活选择。考虑到专题内容的深度与学习强度,若非自学能力极为突出,不建议同时学习两个专题,以免精力分散,影响学习效果。
《CDA1级教材:精益业务数据分析》:https://edu.cda.cn/goods/show/3151?targetId=6734&preview=0
《Python数据分析极简入门》:https://edu.cda.cn/goods/show/3429?targetId=6735&preview=0
领队:秋语
辅助:阿涛、牧童、tukey、紫色纱、小糖
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键的 “纲” 与 “本”。它严格按照考试大纲编写,既适合 CDA LEVEL I 考生备考,也适合业务及数据分析岗位的从业者提升自我。
这本教材能全面、系统地讲解业务数据分析全流程技能,帮你理解数据分析背后的逻辑。它有以下显著特点:
**系统性:**教材从基础知识讲起,逐步过渡到技能提升,最后落脚于实践应用,各个部分联系紧密,形成了完整的学习体系。就像盖房子,从打地基、搭框架到装修,每个步骤都清晰明确,让你能循序渐进地学习。
**实用性:**它不只是讲理论,还很注重理论与实践结合。书中有大量实际案例分析和实操练习,能让你在实际操作中更好地理解和运用知识,真正掌握数据分析的方法,而不只是纸上谈兵。
**前沿性:**在科技快速发展的今天,数据分析领域也在不断变化。CDA1 级教材紧跟时代,介绍了最新的数据分析工具、技术和方法。学习这本教材,能让你跟上行业发展,提升自己在职场上的竞争力。
全书由八大部分构成:绪论、表格结构数据与表结构数据、数据库应用、描述性统计分析、多维数据透视分析、业务分析方法、业务分析报告与数据可视化报表、CDA 职业发展。
为了帮助大家学好这本教材,我们举办了本次打卡活动。基于教材内容开展学习,旨在建立读书交流群。大家可以按照规划好的7周时间进行打卡学习,在群里交流心得、讨论问题,和伙伴们一起进步。
本期计划报名300人,主要面向:
零基础就业转行、应届毕业生,想入门数据分析行业;
未从事数据分析相关工作,想先了解下CDA考试内容;
在备考CDA证书时缺乏时间规划与交流氛围的学员;
数据分析岗位从业人员想精进下自己的理论知识与技能;
产品、运营、营销等业务岗与研发、技术岗在职者想系统学习下;
¥1.7 (PS:1.7 寓意 一起打卡、一起交流、一起进步 )收费不是目的,完成所有打卡后费用可全部返还!
报名入口:https://edu.cda.cn/goods/show/3151?targetId=6734&preview=0
重要的事情说三遍,本期所有打卡交流群,不承诺答疑!不承诺答疑!不承诺答疑! 只有群友互帮互助,互帮互助,信息共享!全靠大家用爱发电,如果你的问题没有得到解答,请多渠道上下而求索~
近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度学习等从业者的首选语言。
“工欲善其事,必先利其器。” 要做好数据分析,离不开一个好的编程工具,不论是从Python的语法之简洁、开发之高效,招聘岗位之热门来说,Python都是数据科学从业者需要掌握的一门语言。
但一直以来,人们却误以为“学会Python”是件很难的事情。
实则不然,这恰恰是我们选择学Python的理由之一。
《Python数据分析极简入门》定位于做数据分析所需Python知识的极简入门,所以只留核心中的核心,即Python基础、Pandas数据分析,确保数据分析的基础知识一网打尽的同时,减轻大家学习的压力!
本期计划报名300人,主要面向:
① 打开过若干次书本被劝退的初学者,希望快速入门Python数据分析;
② 网盘一堆课,却因没有学习氛围而放弃的学生和专业人士;
③ Python内容多不知道哪些是重点无处下手;
④ 跟着程序员的方式去学了Python,然而自己想学的是数据分析;
¥1.7 (PS:1.7 寓意 一起打卡、一起交流、一起进步 )收费不是目的,完成所有打卡后费用可全部返还!
报名入口:https://edu.cda.cn/goods/show/3429?targetId=6735&preview=0
重要的事情说三遍,本期所有打卡交流群,不承诺答疑!不承诺答疑!不承诺答疑! 只有群友互帮互助,互帮互助,信息共享!全靠大家用爱发电,如果你的问题没有得到解答,请多渠道上下而求索~
首期打卡**《Python数据分析极简入门》**内容介绍:https://mp.weixin.qq.com/s/OTMt0EtZ3LC_bwZlMtULsQ
首期打卡**《Python数据分析极简入门》**活动回顾:https://mp.weixin.qq.com/s/QErzAdazShj4Dyaz3CXYwg
第2期打卡**《数据分析组队学习》**内容介绍:https://mp.weixin.qq.com/s/z7LGqPpWNJECBoLcKCS5KQ
第3期打卡**《数据分析组队学习》**内容介绍:https://mp.weixin.qq.com/s/xo-PY2n0x4lMcQX_KfhDzA
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30