
1、闺女,醒醒,媒人把相亲的带来了。
我。。。。。。。
2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个?
3、俺滴个亲娘,相一个不中,相一个不中, 你到底想要什么样的?
王婆,我想找个高的,帅的,有钱的,给我做饭洗衣服的,每个月能给我2万块钱零花钱的。
王婆:我是媒人,不是菩萨,许愿请去旁边大佛寺,真想相亲,去填下表吧!
于是拿到以下这张表
等填完表,干运营的我,突然发现,这不是我老本行,用户的个人标签体系吗?
一张小小和表里,包括了用户的基础标签(如图中所示的身份属性,职业,居住和工作城市,房屋,汽车),统计标签:(年收入,存款量级等)兴趣偏好标签,只不过这个标签体系相对比较简单罢了。
既然聊到这里,关于标签体系的建设,我们就多聊几句。
在当今企业的数字化运营中,标签体系的建设已成为提升用户体验和推动业务发展的关键手段。标签体系不仅帮助企业从海量数据中提炼出有价值的信息,更是精准营销和优化服务的基石。下面我们将详细探讨标签体系的建设框架和其应用于用户画像的关系,以及它们在商业实践中的作用。
企业中的标签体系建设通常基于以下几种框架:
商业价格标签:用于识别用户对不同价格区间的偏好,帮助企业在制定定价策略和促销活动时更具针对性。
营销时机类标签:通过分析用户的购买习惯和历史数据,确定最佳的营销时机,从而提高转化率。
用户生命周期标签:跟踪用户从初次接触到成为忠实客户的全过程,帮助企业制定适合不同阶段用户的策略。
用户行为偏好类标签:记录用户的浏览、购买和互动行为,以便于针对性优化用户体验。
用户价值分类标签:将用户按照其对企业的价值贡献进行分类,以便于差异化的资源分配与服务。
规则标签:通过预设规则对用户进行初步分类,通常用于识别关键客户或潜在风险客户。
用户标签体系是CDA数据分析师一级的重要考点。
标签体系可以进一步细分为以下几类:
基础标签:包括用户的基本信息,如性别、年龄、地区等,这些是构建其他高级标签的基础。
规则标签:基于预设的业务规则生成的标签,比如根据用户的消费金额自动分为VIP客户。
用户画像是将收集到的各类标签进行整合,形成对用户的全面描述。通过标签体系,企业可以提炼出用户画像,进而实现:
精准营销:通过了解用户的偏好和需求,企业能够制定更有针对性的营销策略,提高营销效率和转化率。
差异化服务:根据用户画像,企业可以为不同用户群体提供个性化的服务和产品推荐,从而提升用户满意度和忠诚度。
优化产品:通过分析用户的行为和反馈,有助于企业优化现有产品或开发新产品,以更好地满足市场需求。
在商业实践中,标签体系及用户画像帮助企业实现了用户需求与产品/服务的完美匹配。例如,一家电商平台通过用户购买历史和浏览行为生成的标签,能够在用户登陆网站时自动推荐可能感兴趣的商品。这不仅能增加用户的购物体验,还大大提高了销量。
总之,标签体系和用户画像的构建与应用,是企业实现精细化运营的重要手段。通过深入挖掘用户数据,企业可以更好地理解用户需求,优化产品服务,提升市场竞争力。在这个数据驱动的时代,谁能更好地掌握和利用用户画像,谁就能在激烈的市场竞争中占得先机。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10