
作者:CDA持证人 余治国
一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》,报告中说,从薪酬来看,女性的平均薪酬为8689元/月,与男性的9942元/月相差1253元,报告发布后,立马引起网友热议。
大部分民众对平均工资、平均年终奖、人均GDP是不买账的,为什么?这就是犯了统计上滥用平均值的错误。
问题:
对于偏态数据大多数样本达不到/或远超过平均值水平;
平均值没有代表意义;只看平均值会忽略波动。
原因:
平均值的信息量有限;不能告诉你分布形态和波动;
平均值容易被极端值拉偏;
不同性质的数据被放一起机械的被平均了(需要分层进行分析)。
应对策略:
明确平均值使用的前提条件;正确的应用平均值;
除了关注平均值外,还要搞清楚数据的分布形态;
结合其它指标一起分析(如中位数,极差,标准差等)
某产品寿命服从正态分布,平均值为10000小时,有50%的产品寿命会大于10000小时。
某产品寿命服从指数分布,平均值为10000小时,只有36.79%的产品寿命会大于10000小时。
例:已知某产品每个季度的不良率,求全年度平均不良率。
错误答案1:(1.25%+1.14%+1.15%+1.05)/4
错误答案2:(1.25%*1.14%*1.15%*1.05%)^1/4
正确答案1: (250+240+300+199)/(20000+21000+26000+19000)
正确答案2: (1.25%*20000+1.14%*21000+1.15%*2 6000+1.05%*19000)/ (20000+210000+26000+19000)
问题:
分析:
应对策略:
样本量较小时样本均值或比率波动较大
QE:你看,7号这天原材料不良率太高了,达到停线标准了!你必须把库存都退给供应商!
SQE:这几天使用的原材料都是同一供应商同一批次的,平均不良率为0.13%,质量没问题!
现象:
真实原因:
20世纪70年代,美国为减少红灯时汽车在路口等待造成的汽油浪费,决定评估是否允许红灯时右转。弗吉尼亚公路与运输局研究后报告声称,允许红灯右转后事故发生率没有显著增加(p>0.05)。若干年后研究发现,允许红灯右转后汽车撞毁的频率比以前提高了20%,行人被撞的频率比以前提高了60%。
场景:
问题:
原因:
有很多原因导致数据不服从正态分布;
数据不正态不等于过程不受控;
数据不正态不等于数据造假。
应对对策
相关不等于因果,但因果必相关;因果关系是相关关系的子集;相关关系可以为寻找因果关系提供指引和线索;采取改善措施要针对真正的原因来改善,而不是针对相关关系采取措施。
错误案例
刚出生的婴儿一个月可以长5cm;如果按这个速度预测,他30岁时可以长到多高?
某公司前年销量增长了10%;去年增长了10%,今年也增长了10%;你能用这个增长速度去预测它20年后的销量吗?
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10