
01专家简介
徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中国人民银行结算中心数据分析内训、华夏银行数据分析内训、苏州银行总行数据挖掘内训项目,英国影子银行风险监管分析,纽约市场对香港市场高频交易分析项目。
在大厂的技术面试中,有两个地方是非常有难度的。很多小伙伴都折在的这两个地方。
我们知道大部分人在写算法的时候,通常都是把函数的前几个字母打出来,或者变量名的前几个字母打出来。按一下Tab或者按一下快捷键,就可以带出整个的函数名,然后自己就可以继续往后去写了。
比如说,之前就有一位小伙伴在笔试的时候拿到了一个手写算法的题。
那么分类算法比较好的有什么?有XGBoost,对吧?于是,小伙伴大笔一挥写下了import XGBoost。
扣分的原因是什么?
sklearn里那个包的名字叫什么?叫XGBoost吗?不是,那个包的名字叫XGBClassifier。
这是一个很让人痛苦的事情,算法你会,但是你写不出来。
那就要求大家在日常的学习与工作中,一定要把常用的算法语句用的滚瓜烂熟,才可以让我们在这样的问题上有比较好的回答成果。
CDA数据分析师的能力测试大家可以抽空做做,提高一下自己对模型、函数的敏感度。
第二个在大厂面试中的难点是,把一个技术问题往下深挖好几次。
比如说最简单的一个算法回归分析。有可能在面试的时候面试官问你:
—— 同学,线性回归会吗?
—— 线性回归不能有共线性,你知道吗?
Ok,开始提问。
你解释了一下。我相信大部分小伙伴都可以解释的很清楚。
下面再往下挖一层:怎么检测共线性?
有的小伙伴可能直接就说,共线性嘛,系相关系数就可以啊。
结果被扣分了。为什么?
我们现在要检测的是线性回归里的相关性,那是要考虑偏相关问题的。只用相关技术矩阵可以吗?不够用的,应该用一些更加深入的指标,比如说VIF值等等去检测。
比如说这个问题你正确的回答了出来,检测变量之间的相关性,可以使用VIF值。
那就再往下挖,为什么要检测变量之间的相关性呢?
如果我不考虑这个问题会有怎样的结果出现,那么你不能只回答,如果不考虑共线性问题的话,我这个模型预测效果不好。
显然面试官想要的不是这么直接的回答,他想问你的是这个问题的技术细节。
所以你在这个地方应该回答出的是:
如果我们不处理共线性的问题,就会导致最后最小二乘法所需要的逆矩阵在被计算的时候,这个矩阵的行列式的值就会非常小。于是导致我们求出来的逆矩阵就会非常的大。这是一个非常不好的结果。你求出的矩阵,用这个矩阵算出来的所有参数的取值全都趋近于正无穷,你觉得这个效果能好吗?显然有问题。
如果到这儿你仍然可以准确的回答出来,这已经被挖了三次了,但是你要知道这个问题还可以继续往后挖。
我们再往后挖就是,如果普遍检测出了一共10个变量,这10个变量普遍VIF值都比较高,我们有什么好的方法来处理?
有同学可能马上就会说,正则化方法嘛。
正则化方法又可以问问题了。
正则化方法有偏还是无偏?用完了以后效果怎么样?哪个包可以实现?
我们发现这种技术问题,面试官可以就一个点给你一直往下深挖好几层。
我看过一个调查,同一个问题,当一般往下深挖到第5层的时候,大部分人就已经回答不出来了。
所以这就要求大家平时在学习与工作中,要把每一个技术细节都掌握好,要把技术细节之间的联系找到。因为往下深挖,其实挖的就是这些技术点之间的联系,这是第二个在大场面之中非常容易折的一个点。
CDA数据分析师认证考试的一级和二级都注重对基础概念和知识的挖掘,这些考点都是结合给大厂、银行、金融机构内训总结出来的工作中最实用的技能和知识点。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15