京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析这门技术,看似“高大上”,但真正懂得其原理的人却不多。很多人以为掌握了几种软件工具就算会数据分析了,但事实上,数据分析的核心远不止如此。
今天,我们就来深入聊聊数据分析的基本原理和关键步骤,带你从“会用”迈向“懂得”。
数据分析的第一步就是“找数据”。没有数据,后续的分析都无从谈起。
数据的来源可以说是五花八门,比如:
常见的收集方法也很多,包括手动输入、爬虫技术、API接口调用等。

???? 小提示:有时,找到“对的”数据比找到“大量的”数据更重要。精准、可靠的数据才是分析成功的关键。
你以为数据一收集完就能直接分析?太天真了!
大部分数据分析师都会告诉你,90%的时间花在“数据预处理”上。
数据预处理包括哪些操作?简单总结一下:

???? 实战小技巧:
有一次,我负责的一个项目中,客户数据里“客户生日”字段有30多种格式(如YYYY-MM-DD、DD/MM/YYYY等),每次分析前都得“人工处理”,真是“数据劝退”现场!后来,学会了使用正则表达式,几秒钟就能搞定,省时又高效。
在数据清洗完后,分析师的好奇心会被激发出来。
“这组数据中有什么有趣的现象?”
“是否存在某种趋势、模式或异常?”
这一步,我们会使用到各种统计方法,比如:

???? 灵魂拷问:你有多久没认真看过一份“数据分布图”?
数据分布的可视化(如直方图、散点图等)经常会揭示出意想不到的秘密。
数据的“价值”到底从哪来?
这一步,才是价值的诞生地。
我们会用统计建模和机器学习模型,在数据中挖掘出隐藏的“规则”和“模式”,以便未来预测。常用的方法有:

✨ 个人经验:如果你想快速入门这部分的技能,学一学Python的scikit-learn库,大部分常用的建模技术都能实现。
你是否遇到过“老板只看图不看表”的情况?
这就是数据可视化的意义!
当你把数据转化为图形、图表,甚至是动态图,分析结果会变得更直观。比如:

???? 实用建议:在做数据可视化时,配色方案不要太“花”,尽量保持简洁清晰,让关键信息一目了然。
数据分析的目的,不是数据,而是决策。
前面的所有步骤,都是为“提供决策支持”服务的。
在这一步,我们将所有的分析结果呈现给管理层或客户,并帮助他们做出选择:
在很多企业中,数据分析报告的“最终产品”就是一份PPT或BI仪表盘,呈现清晰的建议、结论和行动计划。
如果你能理解上面6个关键步骤,恭喜你,已经掌握了数据分析的基本框架!
数据分析并不是一个“全能必懂”的领域,而是需要你在实践中不断学习。这里有一个建议:
如果你已经在这条路上前行,别担心遇到困难,因为每一段努力,都会在未来的某一天成为你的底气。
“数据不撒谎,但我们需要会倾听它的声音。”
希望这篇文章能为你拨开迷雾,让你在数据分析的道路上少走弯路,多点清晰!
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20