
Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据结构,因为它依然是 Python 的一个库,所以 Python 中有的数据类型在这里依然适用。我们分别看一下这两种数据结构:
Series:一维数组。该结构能够放置各种数据类型,比如字符、整数、浮点数等
我们先引入pandas包,这里有一个约定成俗的写法import pandas as pd
将pandas引入,并命其别名为pd
接着将列表[2,3,5,7,11]
放到pd.Series()里面
import pandas as pd
s = pd.Series([2,3,5,7,11],name = 'A')
s
0 2
1 3
2 5
3 7
4 11
Name: A, dtype: int64
同样的,将列['2024-01-01 00:00:00', '2024-01-01 03:00:00','2024-01-01 06:00:00']
放到pd.DatetimeIndex()里面
dts1 = pd.DatetimeIndex(['2024-01-01 00:00:00', '2024-01-01 03:00:00','2024-01-01 06:00:00'])
dts1
DatetimeIndex(['2024-01-01 00:00:00', '2024-01-01 03:00:00',
'2024-01-01 06:00:00'],
dtype='datetime64[ns]', freq=None)
还有另外一种写法pd.date_range
可以按一定的频率生成时间序列
dts2 = pd.date_range(start='2024-01-01', periods=6, freq='3H')
dts2
DatetimeIndex(['2024-01-01 00:00:00', '2024-01-01 03:00:00',
'2024-01-01 06:00:00', '2024-01-01 09:00:00',
'2024-01-01 12:00:00', '2024-01-01 15:00:00'],
dtype='datetime64[ns]', freq='3H')
dts3 = pd.date_range('2024-01-01', periods=6, freq='d')
dts3
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04',
'2024-01-05', '2024-01-06'],
dtype='datetime64[ns]', freq='D')
DataFrame:二维的表格型数据结构,可以理解为Series的容器,通俗地说,就是可以把Series放到DataFrame里面。
它是一种二维表格型数据的结构,既有行索引,也有列索引。行索引是 index,列索引是 columns。类似于初中数学里,在二维平面里用坐标轴来定位平面中的点。
注意,DataFrame又是Pandas的核心!接下来的内容基本上以DataFrame为主
先来看看如何创建DataFrame,上面说过Series也好,DataFrame也罢,本质上都是容器。
千万别被”容器“这个词吓住了,通俗来说,就是里面可以放东西的东西。
从字典创建DataFrame
相当于给里面放dict:先创建一个字典d
,再把d
放进了DataFrame
里命名为df
d = {'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, 8, 9]}
df = pd.DataFrame(data = d)
df
A | B | C | |
---|---|---|---|
0 | 1 | 4 | 7 |
1 | 2 | 5 | 8 |
2 | 3 | 6 | 9 |
从列表创建DataFrame
先创建了一个列表d
,再把d
放进了DataFrame
里命名为df
d = [[4, 7, 10],[5, 8, 11],[6, 9, 12]]
df1 = pd.DataFrame(
data = d,
index=['a', 'b', 'c'],
columns=['A', 'B', 'C'])
df1
A | B | C | |
---|---|---|---|
a | 4 | 7 | 10 |
b | 5 | 8 | 11 |
c | 6 | 9 | 12 |
从数组创建DataFrame
数组(array)对你来说可能是一个新概念,在Python里面,创建数组需要引入一个类似于Pandas的库,叫做Numpy。与前面引入Pandas类似,我们用 import numpy as np
来引入numpy,命其别名为np。
同样的,先创建一个数组d
,再把d
放进了DataFrame
里命名为df
import numpy as np
d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df2 = pd.DataFrame(data = d,
index=['a', 'b', 'c'],
columns=['A', 'B', 'C'])
df2
A | B | C | |
---|---|---|---|
a | 1 | 2 | 3 |
b | 4 | 5 | 6 |
c | 7 | 8 | 9 |
以上,我们用了不同的方式来创建DataFrame,接下来,我们看看创建好后,如何查看数据
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
下一节 《第2节 Pandas简介》
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13