京公网安备 11010802034615号
经营许可证编号:京B2-20210330
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
clear
cd /opt/linuxsir/hadoop/sbin
./start-dfs.sh
./start-yarn.sh
clear
jps
ssh root@192.168.31.132 jps
ssh root@192.168.31.133 jps
在eclipse里面操作如下:
New-Java Project,名称自定义即可,如 java-prjNew-Package,名称自定义为com.pai.hdfs_demoNew-Class,名称自定义为ReadWriteHDFSExamplepackage com.pai.hdfs_demo;
import org.apache.commons.io.IOUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.*;
import java.nio.charset.StandardCharsets;
public class ReadWriteHDFSExample {
// main 新建一个类ReadWriteHDFSExample,编写main函数如下。main函数调用其它函数,创建目录,写入数据,添加数据,然后再读取数据
public static void main(String[] args) throws IOException {
// ReadWriteHDFSExample.checkExists();
ReadWriteHDFSExample.createDirectory();
ReadWriteHDFSExample.writeFileToHDFS();
ReadWriteHDFSExample.appendToHDFSFile();
ReadWriteHDFSExample.readFileFromHDFS();
}
// readFileFromHDFS 该函数读取文件内容,以字符串形式显示出来
public static void readFileFromHDFS() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
FileSystem fileSystem = FileSystem.get(configuration);
// Create a path
String fileName = "read_write_hdfs_example.txt";
Path hdfsReadPath = new Path("/javareadwriteexample/" + fileName);
// initialize input stream
FSDataInputStream inputStream = fileSystem.open(hdfsReadPath);
// Classical input stream usage
String out = IOUtils.toString(inputStream, "UTF-8");
System.out.println(out);
// BufferedReader bufferedReader = new BufferedReader(
// new InputStreamReader(inputStream, StandardCharsets.UTF_8));
// String line = null;
// while ((line=bufferedReader.readLine())!=null){
// System.out.println(line);
// }
inputStream.close();
fileSystem.close();
}
// writeFileToHDFS writeFileToHDFS函数打开文件,写入一行文本
public static void writeFileToHDFS() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
FileSystem fileSystem = FileSystem.get(configuration);
// Create a path
String fileName = "read_write_hdfs_example.txt";
Path hdfsWritePath = new Path("/javareadwriteexample/" + fileName);
FSDataOutputStream fsDataOutputStream = fileSystem.create(hdfsWritePath, true);
BufferedWriter bufferedWriter = new BufferedWriter(
new OutputStreamWriter(fsDataOutputStream, StandardCharsets.UTF_8));
bufferedWriter.write("Java API to write data in HDFS");
bufferedWriter.newLine();
bufferedWriter.close();
fileSystem.close();
}
// appendToHDFSFile 函数打开文件,添加一行文本。需要注意的是,需要对Configuration类的对象configuration进行适当设置,否则出错
public static void appendToHDFSFile() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
//configuration.setBoolean("dfs.client.block.write.replace-datanode-on-failure.enabled", true);
configuration.set("dfs.client.block.write.replace-datanode-on-failure.policy","NEVER");
configuration.set("dfs.client.block.write.replace-datanode-on-failure.enable","true");
FileSystem fileSystem = FileSystem.get(configuration);
// Create a path
String fileName = "read_write_hdfs_example.txt";
Path hdfsWritePath = new Path("/javareadwriteexample/" + fileName);
FSDataOutputStream fsDataOutputStream = fileSystem.append(hdfsWritePath);
BufferedWriter bufferedWriter = new BufferedWriter(
new OutputStreamWriter(fsDataOutputStream, StandardCharsets.UTF_8));
bufferedWriter.write("Java API to append data in HDFS file");
bufferedWriter.newLine();
bufferedWriter.close();
fileSystem.close();
}
// createDirectory 函数创建一个目录
public static void createDirectory() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
FileSystem fileSystem = FileSystem.get(configuration);
String directoryName = "/javareadwriteexample";
Path path = new Path(directoryName);
fileSystem.mkdirs(path);
}
// checkExists checkExists检查目录或者文件是否存在。注意如下代码的最后一个括号是ReadWriteHDFSExample类的结束括号
public static void checkExists() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
FileSystem fileSystem = FileSystem.get(configuration);
String directoryName = "/javareadwriteexample";
Path path = new Path(directoryName);
if (fileSystem.exists(path)) {
System.out.println("File/Folder Exists : " + path.getName());
} else {
System.out.println("File/Folder does not Exists : " + path.getName());
}
}
}
为了编译通过上述Java代码,需要把如下目录下的jar包导入Eclipse项目的Build Path
操作序列为 右键点击Eclipse里的Java项目→Properties→Java Build Path →Libraries→Add External Jars
# 添加如下路径的包
D:hadoop-2.7.3sharehadoopcommonlib
D:hadoop-2.7.3sharehadoopcommon
D:hadoop-2.7.3sharehadoophdfs
D:hadoop-2.7.3sharehadoophdfslib
D:hadoop-2.7.3sharehadoopmapreducelib
D:hadoop-2.7.3sharehadoopmapreduce
D:hadoop-2.7.3sharehadoopyarnlib
D:hadoop-2.7.3sharehadoopyarn
就可以愉快地执行了,执行完毕上述代码后,在hd-master主机上可以通过如下命令,检查已经写入的文件
[root@hd-master bin]# cd /opt/linuxsir/hadoop/bin
[root@hd-master bin]# ./hdfs dfs -ls /javareadwriteexample/read_write_hdfs_example.txt
-rw-r--r-- 3 root supergroup 70 2024-10-10 04:47 /javareadwriteexample/read_write_hdfs_example.txt
[root@hd-master bin]# ./hdfs dfs -cat /javareadwriteexample/read_write_hdfs_example.txt
Java API to write data in HDFS
Java API to append data in HDFS file
为了多次进行实验(或者为了调试代码),可以把HDFS文件删除,然后再执行或者调试Java代码,否则一经存在该目录,执行创建目录的代码就会出错
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -rm /javareadwriteexample/*
./hdfs dfs -rmdir /javareadwriteexample
cd /opt/linuxsir/hadoop/sbin
./stop-yarn.sh
./stop-dfs.sh
jps
ssh root@192.168.31.132 jps
ssh root@192.168.31.133 jps
package mywordcount;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
//定义WordCount类的内部类TokenizerMapper 该类实现了map函数,把从文件读取的每个word变成一个形式为<word,1>的Key Value对,输出到map函数的参数context对象,由执行引擎完成Shuffle
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
//定义WordCount类的内部类IntSumReducer 该类实现了reduce函数,它收拢所有相同key的、形式为<word,1>的Key-Value对,对Value部分进行累加,输出一个计数
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
String thekey = key.toString();
int thevalue = sum;
}
}
// WordCount类的main函数,负责配置Job的若干关键的参数,并且启动这个Job。在main函数中,conf对象包含了一个属性即“fs.defaultFS”,它的值为“hdfs://192.168.31.131:9000”,使得WordCount程序知道如何存取HDFS
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
conf.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
[root@hd-master bin]# ./hdfs dfs -ls /output1
Found 2 items
-rw-r--r-- 3 root supergroup 0 2024-10-10 05:17 /output1/_SUCCESS
-rw-r--r-- 3 root supergroup 89 2024-10-10 05:17 /output1/part-r-00000
[root@hd-master bin]# ./hdfs dfs -cat /output1/part-r-00000
I 1
apache 1
cloudera 1
google 1
hadoop 8
hortonworks 1
ibm 1
intel 1
like 1
microsoft 1
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27