
启用HDFS文件系统之前,需要对其进行格式化;格式化只需做一次
在192.168.31.130上执行如下命令
cd /opt/linuxsir/hadoop/bin
./hdfs namenode -format
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
cd /opt/linuxsir/hadoop/sbin
./start-all.sh
\如果要停止,请执行如下命令
cd /opt/linuxsir/hadoop/sbin
./stop-all.sh
clear
cd /opt/linuxsir/hadoop/sbin
./start-dfs.sh
./start-yarn.sh
\如果要停止,请执行如下命令,即分开停止HDFS和YARN
cd /opt/linuxsir/hadoop/sbin
./stop-yarn.sh
./stop-dfs.sh
现在,可以在三个节点上,查看进程,验证Hadoop是否成功启动
[root@hd-master bin]# jps
6262 NameNode
28630 Jps
6455 SecondaryNameNode
6618 ResourceManager
[root@hd-master bin]# ssh root@192.168.31.132 jps
3431 NodeManager
20697 Jps
3311 DataNode
[root@hd-master bin]# ssh root@192.168.31.133 jps
3313 DataNode
3431 NodeManager
20295 Jps
到目前为止,启动HDFS和YARN以后,各个节点的进程,如下图所示
层级 | hd-master | hd-slave1 | hd-slave2 |
---|---|---|---|
hdfs层 | NameNode、Secondary、NameNode | DataNode | DataNode |
Yarn层 | ResourceManager | NodeManager | NodeManager |
hardware各个节点 | 192.168.31.131 | 192.168.31.132 | 192.168.31.133 |
在hd-master上运行如下命令,报告HDFS的基本信息
cd /opt/linuxsir/hadoop
./bin/hdfs dfsadmin -report
[root@hd-master bin]# cd /opt/linuxsir/hadoop
[root@hd-master hadoop]# ./bin/hdfs dfsadmin -report
Configured Capacity: 63116517376 (58.78 GB)
Present Capacity: 52430880768 (48.83 GB)
DFS Remaining: 52430462976 (48.83 GB)
DFS Used: 417792 (408 KB)
DFS Used%: 0.00%
Under replicated blocks: 2
Blocks with corrupt replicas: 0
Missing blocks: 0
Missing blocks (with replication factor 1): 0
-------------------------------------------------
Live datanodes (2):
Name: 192.168.31.133:50010 (hd-slave2)
Hostname: hd-slave2
Decommission Status : Normal
Configured Capacity: 31558258688 (29.39 GB)
DFS Used: 208896 (204 KB)
Non DFS Used: 5349883904 (4.98 GB)
DFS Remaining: 26208165888 (24.41 GB)
DFS Used%: 0.00%
DFS Remaining%: 83.05%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Oct 11 01:29:14 PDT 2024
Name: 192.168.31.132:50010 (hd-slave1)
Hostname: hd-slave1
Decommission Status : Normal
Configured Capacity: 31558258688 (29.39 GB)
DFS Used: 208896 (204 KB)
Non DFS Used: 5335752704 (4.97 GB)
DFS Remaining: 26222297088 (24.42 GB)
DFS Used%: 0.00%
DFS Remaining%: 83.09%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Oct 11 01:29:14 PDT 2024
如果Hadoop启动出问题,可以通过查看日志来寻找原因。每次启动Hadoop,应该首先清空三个节点的logs目录,方便寻找错误。
当启动出错,可以到相应节点上,查看日志文件。哪个节点启动出错,就看哪个节点的日志文件。由于有无密码ssh登录,可以通过主节点登录到其它节点,去查看所有节点的日志文件。
日志文件分别在hd-master、hd-slave1、hd-slave2的/opt/linuxsir/hadoop/logs目录下。
启动Hadoop之前,删除log文件
如果启动出问题,log文件里就是最新的出错信息
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
若干web管理界面,列表如下
访问NameNode管理页面,监控文件系统。 http://192.168.31.131:50070/
访问ResourceManager(整个Cluster)管理页面,监控集群状况。 http://192.168.31.131:9099/ 这个端口缺省是8088,由于端口冲突,改成9099, 参考yarn-site.xml
MapReduce JobHistory Server的管理页面,查看MapReduce作业提交历史;需要事先启动JobHistory Server。 http://192.168.31.131:19888/
cd /opt/linuxsir/hadoop/bin
hdfs dfsadmin -safemode leave
\ 用户可以通过dfsadmin -safemode value 来操作安全模式,参数value的说明如下:
\ enter - 进入安全模式
\ leave - 强制NameNode离开安全模式
\ get - 返回安全模式是否开启的信息
\ wait - 等待,一直到安全模式结束
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -rm -r /input \ 递归式删除目录
./hdfs dfs -mkdir /input \ 创建目录
./hdfs dfs -chmod a+rwx /input \ 授权
./hdfs dfs -mkdir /output \ 创建目录
./hdfs dfs -copyFromLocal /opt/linuxsir/test.txt /input \ 拷贝文件到HDFS
\ 或者./hdfs dfs -put /opt/linuxsir/test.txt /input
./hdfs dfs -cat /input/test.txt | head \ 显示文件的头几行
注意,需要事先启动HDFS和YARN
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -cat /input/test.txt
./hadoop jar /opt/linuxsir/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /input/test.txt /output
./hdfs dfs -ls /output
./hdfs dfs -cat /output/part-r-00000
为了运行wordcount,必须保证hdfs分布式文件系统的/output不存在。如果存在可以把它删除,命令如下
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -ls /output
./hdfs dfs -rm /output/*
./hdfs dfs -rmdir /output
在hd-master节点上,配置History Server
1、在.../etc/hadoop/mapred-site.xml中配置以下内容
<property>
<name>mapreduce.jobhistory.address</name>
<value>hd-master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hd-master:19888</value>
</property>
2、把hd-master的新配置分发到所有节点即hd-slave1和hd-slave2。
clear
scp /opt/linuxsir/hadoop/etc/hadoop/mapred-site.xml hd-slave1:/opt/linuxsir/hadoop/etc/hadoop
scp /opt/linuxsir/hadoop/etc/hadoop/mapred-site.xml hd-slave2:/opt/linuxsir/hadoop/etc/hadoop
3、启动服务,在hd-master这台服务器上执行以下语句。 注意,需要事先启动HDFS和YARN
cd /opt/linuxsir/hadoop/sbin
mr-jobhistory-daemon.sh start historyserver
clear
jps
ssh root@192.168.31.132 jps
ssh root@192.168.31.133 jps
访问MapReduce JobHistory Server
http://192.168.31.131:19888/
为了顺利运行该实例,需要编辑/opt/linuxsir/hadoop/etc/hadoop/hdfs-site.xml配置文件,添加如下配置
<!-- for windows access linux HDFS -->
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01