京公网安备 11010802034615号
经营许可证编号:京B2-20210330
听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说!
先说结论,大多数情况下的学不会都不是知识本身难,而是被知识的传播者劝退的。
比如大佬们授课,虽逻辑严谨、思维缜密,但你只能望其项背,因为大佬们往往无法体会菜鸟的痛苦。再比如一些照本宣科的老师,他们没有深入研究这些知识,无法用通俗的语言帮你解释,只能貌似努力地帮你认真地读完所有PPT……
究其本质而言,这种情况多半是按 “是什么、有什么用,怎么用” 的方式在学,而对在大多数人而言,第一步就学懂“是什么”,或许难度有点大,因为得从定义出发,了解性质,推导出原理,一套流程下来直接劝退了,反而最关心的有什么用、怎么用的问题没有解决。
所以接下来的内容我将用“MVP(最小可行化产品)” 的思路来筛选重点内容,帮你厘清哪些内容是不可或缺及必须要学的。然后以 “有什么用,怎么用,是什么” 的顺序展开,快速提升当你急需Get某个技能时候的学习效率。
另外教程的标题既然含有“极简入门”,那么至少有2个原则:
说“尽量”是因为有些时候,不得不说些废话才能引起你的注意,比如以上内容…
好,我们正式开始!首先来看第一个问题:
我们都知道,一般数据可以分为两类,即定性数据(类别型数据)和定量数据(数值型数据)

(1). 定性数据, 表示研究对象的类别。很好理解,这里的表示类别用的数字没有大小之分,不能进行算术四则运算。
定性数据可以分为:
① 定类数据
表现为类别,但不区分顺序,是由定类尺度计量形成的。一般可以从非数值型数据中编码转换而来,数值本身没有意义,只是为了区分类别做出的数值型标识
例如性别用1代表男性,用2代表女性;血型用1,2,3,4来表示A、B、AB及O四种;
② 定序数据
表现为类别,但有顺序,是由定序尺度计量形成的。运算符也没有意义,
例如受教育程度用 文盲 = 1,半文盲 = 2,小学 = 3,初中 =4,高中 = 5,大专 = 6,本科 = 7,(研究生)硕士 = 8,(研究生)博士 = 9表示。
(2). 定量数据, 表示的是研究对象的数量特征,如人群中人的身高、体重等。
定量数据可以分为以下几种:
① 定距数据
表现为数值,可进行加、减运算,是由定距尺度计量形成的。定距数据的特征是没有绝对的零点,例如温度,不能说10摄氏度的一倍是20摄氏度。因此乘、除法对于定距数据来说也是没有意义的。
② 定比数据
表现为数值,可进行加、减、乘、除运算,是由定比尺度计量形成的。定比数据存在绝对的零点。例如价格,100元的2倍就是200元。
先看一个例子,这里有一组数据 2,23,4,17,12,12,13,16,请思考你要怎么描述它?
你可能会说他们的平均数是12.375,中位数是12.5,最大值是23,最小值是2,等等。
没错,这里其实你已经在用平均数、中位数、最大值、最小值的来描述这组数据。

那么用几个数来描述一堆数就是统计学的基本概念:统计学是一门将 数据汇总为统计量或图表的学问。
Tips:通俗来说就是,数据太多记不住且不好描述,需要简化为更少的数字或图表,于是有了统计学和统计图表
知道了统计学的定义再接着看:
通常我们把统计学分为两大方向,通过计算出来的统计量来概括已有数据叫做描述统计学,通过样本获取总体特征的叫做推断统计学
Tips:“算”出来的统计量,比如 中位数、平均值、众数 这些;“猜”出来的叫推断统计学,比如通过样本数据来推断总体的数字特征。
下面这张图展示了统计学两大分支:描述统计与推断统计。其中推断统计又分两大学派,频率学派与贝叶斯学派。这些内容大家先知道就行,后面再展开。

这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09