京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数说跨屏时代的大数据营销
移动互联网的迅速崛起,使得一边看电视,一边玩手机、平板成为人们生活的新常态。在多屏的包围中,人们的时间行为和注意力被分散到了不同的屏幕上,有调查显示,超过78%的人看电视的同时会刷微博、玩微信。在这样一个被碎片化的时代中,广告主如果想要更好地抓住消费者的兴趣点,必须考虑跨屏整合的数字营销方式。
2014年11月26日,作为国内多屏程序化购买的引领者,悠易互通在上海四季酒店举办了“悠易DSP DAY”主题活动,围绕跨屏互动的程序化购买、大数据营销的新体验和未来机遇,悠易互通CEO周文彪、Google大中华区程序化购买买方事务总经理郭志明、海尔家电产业集团营销总经理宋照伟、百度展示广告事业部产品总监沈昭阳等业界精英展开了激烈的思维碰撞,并同参会者一起分享了有关大数据、跨屏、视频、PMP、移动等内容的干货。
记者了解到,悠易互通于2012年时首次将源于美国的“程序化购买”概念引入国内,推出当时国内第一个支持实时竞价的需求方平台(DSP)。1年后,悠易互通在DPS1.0的基础上再次革新,推出了划时代的DSP2.0,于国内多屏程序化购买的比赛中再次领跑。
悠易互通推出的DSP2.0系统不仅以单用户界面,整合了实时竞价和非实时竞价(non-RTB)模式资源、展示广告和搜索广告,并对接国内所有广告交易平台与供应方平台(SSP),能够为广告主提供平均每天120亿的跨屏(PC、平板、与手机端)、丰富格式(视频、视窗、富媒体、画中画、横幅等)的优质广告流量。
同时,这套系统通过动态预算分配,将大数据的优势发挥到极致,解决了传统广告投放效率低、不透明的问题,帮助广告主和代理公司进行品牌投放时能够像搜索引擎一样高效、规模化且可以评估。截至目前,悠易互通已为包括联合利华、联想、惠普、壳牌、奥迪等300多家国际与国内客户提供了卓越的品牌效果解决方案。
“悠易的核心团队来自Google、淘宝、百度、腾讯等一流互联网企业。不论是研发团队还是管理团队,都既有国际化视野同时具备高效的执行力。”悠易DSP DAY主题活动中,悠易互通CEO周文彪表示,“技术与数据是悠易始终专注的两个层面。在技术层面上,我们拥有一个整合平台与诸多专利技术产品,在数据层面上,我们于今年1月推出国内首个数据管理平台‘数据银行’,6个月一年后的今天,数据银行正式升级为2.0版本。”
悠易互通CEO周文彪
周文彪向记者介绍,悠易互通的拳头产品分为两部分,分别是多屏程序化购买平台与数据银行。此次发布的数据银行2.0主要体现在PC端与移动端的跨屏数据的高效整合。
“数据银行1.0解决了广告主收集、分析、管理第一方数据的难题,并与庞大的第三方数据打通,在产品中形成数据应用闭环,不过这些数据的应用更多局限在PC端上。”周文彪告诉记者,跨屏的出现给品牌营销出了一道难题,如何在多屏环境下找到你的目标人群,并且对他们进行有效覆盖,同时对这些人群建立深度和广度的用户交互?
“我们差不多用了3个月的时间来思考酝酿,用6个月的时间经验来积累总结。”悠易互通产品副总裁蒋楠说:“数据2.0为跨屏而生,它有效针对当下的跨屏潮流,有效地将PC端的庞大数据迁移到移动端上,形成跨屏ID。为广告主在移动端,通过刚才讲到的从到达到浏览,到转化的所有数据,形成一个效果评估的衡量工具提供归因模型和跨屏归因。”
在大数据时代,得数据者得天下,数据是指引程序化购买的指南针。在周文彪眼中,跨屏整合不仅仅是一项技术,而是一个大平台。“对我个人而言,这是自2002年搜索引擎以后,对互联网广告产生最深刻影响的一项技术。目前BAT等一些巨头都已经进来,诸多国际化大品牌客户也都在使用。未来,数据银行的3.0版本将实现跨屏的衡量和归因,使悠易能够还原每位广告主花的每一分钱到底值还是不值。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13