京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析是一个跨学科的领域,适合各种专业背景的学生学习。不过,以下几个专业的在校生可能会发现数据分析特别有用:
统计学:统计学是数据分析的基础,学习统计学可以帮助你理解数据分布、概率论和推断统计。
计算机科学:计算机科学专业的学生通常具备编程技能,这对于处理和分析大量数据至关重要。
数学:数学专业的学生通常对算法和逻辑推理有深入理解,这对于数据建模和优化分析方法很有帮助。
经济学:经济学专业的学生通常需要处理经济数据,学习数据分析可以帮助他们更好地理解经济模型和市场趋势。
商业管理:商业管理专业的学生可以利用数据分析来优化业务流程、市场分析和客户洞察。
工程学:工程学学生经常需要处理实验数据,数据分析技能可以帮助他们进行实验设计和结果分析。
心理学:心理学专业的学生可以使用数据分析来研究人类行为和心理实验的结果。
社会科学:社会科学专业的学生经常需要分析调查数据和社会现象,数据分析技能可以帮助他们进行更深入的研究。
生物信息学:生物信息学是生物学和计算机科学的交叉领域,数据分析在基因组学、蛋白质组学等领域中非常重要。
数据科学:数据科学专业是专门为数据分析设计的,涵盖了数据收集、处理、分析和解释的全过程。
无论专业如何,对数据感兴趣、愿意学习编程和统计学原理的学生都可以学习数据分析。此外,许多在线课程和资源也可以帮助非相关专业的学生掌握数据分析技能。
对于非计算机专业背景的学生来说,学习数据分析的在线课程有很多不错的选择,找专业的网络课程去学习,以下是一些推荐的课程:
Coursera 上的课程,如 "Data Analysis and Presentation Skills: the PwC Approach",由普华永道提供,适合职场人士学习数据分析和数据呈现技能。这个课程包括数据决策思维训练、Excel进阶技能、Excel可视化和PPT商业数据报告制作等内容。
网易云课堂 上的 "小蚊子数据分析" 课程,适合初学者入门,课程内容全面,涵盖数据分析的基础知识和实用技能。
Udacity 提供的 "数据分析师课程",这是一个专业的数据分析课程,适合想要深入学习并从事数据分析工作的学生。
中国大学MOOC 上的 "Python大数据分析" 课程,由南京财经大学提供,适合非计算机专业学生,课程内容不过度强调编程能力,而是侧重于方法的应用和问题的解决。
中国大学MOOC 上的 "非结构化大数据分析" 课程,适合非计算机专业的软件开发爱好者,课程内容丰富,包括Python基础、数据获取与表示、数据统计与挖掘等。
freeCodeCamp 提供的 "How to Get Started in Data Analytics – A Roadmap for Beginners",这是一个免费的资源,适合初学者了解数据分析师的工作内容和要求,以及如何开始学习数据分析。
Udemy 上的 "Python数据分析:从入门到精通" 课程,适合有基本数学技能和想要学习第一门编程语言的学生,课程内容包括Python编程、数据分析工具的使用等。
知乎 上的 "七周七学习成为数据分析师",这是一个免费的自学课程,适合有一定编程基础的半专业人士,课程设计包括Excel学习、数据可视化、分析思维训练等。
哪些在线课程适合非计算机专业背景的学生学习数据分析?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12