
最近后台很多准大一的小伙伴在问大数据分析专业的相关问题,大数据专业学起来很累吗?就业前景怎么样?今天咱们就重点回答一下相关问题。
先直接来结论:学习大数据专业是有一定难度,因为大数据是一个比较典型的交叉学科,涉及知识面比较广,而且也有一定的学习难度,所以选择学习大数据还是比较辛苦的。
但如果你是真心喜欢大数据,未来想在大数据行业有所沉淀,我相信你会发现大数据魅力,未来前景也是很光明。
今天咱们主要讲这3部分:
01
大数据专业学习情况
各类学校的课程开设情况还是很不一样的,我们发现不同层次学校的开课状况也不同。
985高校大数据专业上课现状:
大一课就很多简直就是高四,一周十多节课天天早八,睡不了几天午觉,因为下午第一节也总是有课。因为课多,作业也多,大一两个学期都在和数学分析作斗争,一旦有一点没听懂,之后想跟上就非常困难了。每章作业都是正反面满满的好几张作业纸。期末也需要刷很多的题,找很多模拟卷做。和高三真的没有什么区别。
而且那些编程语言的课比如Java,c++光是理解清楚就很难了,学操作基本靠上机课。在自己电脑上装软件装了好几天,装好了莫名其妙的bug还特别多。期末大作业是设计小游戏,虽然给了两周时间,还是熬了很多的夜改bug,准备应对老师的提问。在这期间发现编程语言老师能给你讲的只是冰山一角,实际操作有很大一部分都是要自己上网查的。所以一定要有比较强的检索信息能力和自学能力。
二本三本院校学习现状:
学校的人才培养方案的通病:定位不清晰,我们专业其实在人工智能方向钻研深入一些。至于大数据相关技术,不得不承认教得比较粗浅。这是源于大数据相关知识比较难,需要大量知识铺垫才能理解,加之现在掌握大数据技术的老师较少(至少我们学校),大家都是现学现卖,教学质量不能说好。这种情况下,只能自己找出路,从网上找资源自学。
02
大数据专业的就业前景:
社会对大数据专业人才需求量激增,如今大数据人才呈现爆发式发展与严重人才荒并存的尴尬景象,中国人工智能人才缺口超过500万,大数据人才缺口高达150万。人才少,但是企业对于人才的需求却丝毫不减。最近几年大数据也将会是未来最有发展前景的行业之一。
大数据技术与应用专业市场需求旺盛,对应岗位有大数据开发工程师、爬虫工程师、数据分析师、数据科学家、数据挖掘工程师、机器学习工程师等;
薪资上,大数据入门月薪已经达到了8K以上,工作1年月薪可达到1.2W以上,具有2-3年工作经验的人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。
目前,大到世界500强,BAT这样的公司,小到创业公司,他们都需求数据人才。所以学习大数据专业的前景和形势客观来说是很好的。
03
学习建议
可能还会有些人觉得自己担心学不学得来,这里给一些参考点,符合下面特征的,不管男女都是适合学习大数据专业。
1.数学要学好
大数据专业需要有一定的数学基础,通识课部分就设置了三门数学课,统计学,计算机。建议考入大数据专业的童鞋,可以看看一些入门课,客观评估自己的数学能力,同时看下上面“数据科学与大数据技术专业简介”,如果数学能力很差,会造成挂科过多、学习压力过大、就业困难等不良后果。
2.有耐心有毅力
大数据专业和计算机专业比较像,是注重实践的专业。学生需要独立编写程序,对程序进行修改与调试,需要注意每一个细节才能顺利查错并运行程序。有耐心有毅力的学生显然更能坐得住,心浮气躁的学生则需要一番磨练才能成功。
3.提升自主学习能力
一般情况下,大数据专业无法向学生传授大数据核心技术之外的知识技能,如果学生需要进入全新领域去实习就业,就必须要迅速掌握新领域的相关知识。假如学生到金融行业从事数据挖掘工作,就必须对金融产品及用户有所了解。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30