京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最近后台很多准大一的小伙伴在问大数据分析专业的相关问题,大数据专业学起来很累吗?就业前景怎么样?今天咱们就重点回答一下相关问题。
先直接来结论:学习大数据专业是有一定难度,因为大数据是一个比较典型的交叉学科,涉及知识面比较广,而且也有一定的学习难度,所以选择学习大数据还是比较辛苦的。
但如果你是真心喜欢大数据,未来想在大数据行业有所沉淀,我相信你会发现大数据魅力,未来前景也是很光明。
今天咱们主要讲这3部分:
01
大数据专业学习情况
各类学校的课程开设情况还是很不一样的,我们发现不同层次学校的开课状况也不同。
985高校大数据专业上课现状:
大一课就很多简直就是高四,一周十多节课天天早八,睡不了几天午觉,因为下午第一节也总是有课。因为课多,作业也多,大一两个学期都在和数学分析作斗争,一旦有一点没听懂,之后想跟上就非常困难了。每章作业都是正反面满满的好几张作业纸。期末也需要刷很多的题,找很多模拟卷做。和高三真的没有什么区别。
而且那些编程语言的课比如Java,c++光是理解清楚就很难了,学操作基本靠上机课。在自己电脑上装软件装了好几天,装好了莫名其妙的bug还特别多。期末大作业是设计小游戏,虽然给了两周时间,还是熬了很多的夜改bug,准备应对老师的提问。在这期间发现编程语言老师能给你讲的只是冰山一角,实际操作有很大一部分都是要自己上网查的。所以一定要有比较强的检索信息能力和自学能力。
二本三本院校学习现状:
学校的人才培养方案的通病:定位不清晰,我们专业其实在人工智能方向钻研深入一些。至于大数据相关技术,不得不承认教得比较粗浅。这是源于大数据相关知识比较难,需要大量知识铺垫才能理解,加之现在掌握大数据技术的老师较少(至少我们学校),大家都是现学现卖,教学质量不能说好。这种情况下,只能自己找出路,从网上找资源自学。
02
大数据专业的就业前景:
社会对大数据专业人才需求量激增,如今大数据人才呈现爆发式发展与严重人才荒并存的尴尬景象,中国人工智能人才缺口超过500万,大数据人才缺口高达150万。人才少,但是企业对于人才的需求却丝毫不减。最近几年大数据也将会是未来最有发展前景的行业之一。
大数据技术与应用专业市场需求旺盛,对应岗位有大数据开发工程师、爬虫工程师、数据分析师、数据科学家、数据挖掘工程师、机器学习工程师等;
薪资上,大数据入门月薪已经达到了8K以上,工作1年月薪可达到1.2W以上,具有2-3年工作经验的人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。
目前,大到世界500强,BAT这样的公司,小到创业公司,他们都需求数据人才。所以学习大数据专业的前景和形势客观来说是很好的。
03
学习建议
可能还会有些人觉得自己担心学不学得来,这里给一些参考点,符合下面特征的,不管男女都是适合学习大数据专业。
1.数学要学好
大数据专业需要有一定的数学基础,通识课部分就设置了三门数学课,统计学,计算机。建议考入大数据专业的童鞋,可以看看一些入门课,客观评估自己的数学能力,同时看下上面“数据科学与大数据技术专业简介”,如果数学能力很差,会造成挂科过多、学习压力过大、就业困难等不良后果。
2.有耐心有毅力
大数据专业和计算机专业比较像,是注重实践的专业。学生需要独立编写程序,对程序进行修改与调试,需要注意每一个细节才能顺利查错并运行程序。有耐心有毅力的学生显然更能坐得住,心浮气躁的学生则需要一番磨练才能成功。
3.提升自主学习能力
一般情况下,大数据专业无法向学生传授大数据核心技术之外的知识技能,如果学生需要进入全新领域去实习就业,就必须要迅速掌握新领域的相关知识。假如学生到金融行业从事数据挖掘工作,就必须对金融产品及用户有所了解。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20