
最近后台很多准大一的小伙伴在问大数据分析专业的相关问题,大数据专业学起来很累吗?就业前景怎么样?今天咱们就重点回答一下相关问题。
先直接来结论:学习大数据专业是有一定难度,因为大数据是一个比较典型的交叉学科,涉及知识面比较广,而且也有一定的学习难度,所以选择学习大数据还是比较辛苦的。
但如果你是真心喜欢大数据,未来想在大数据行业有所沉淀,我相信你会发现大数据魅力,未来前景也是很光明。
今天咱们主要讲这3部分:
01
大数据专业学习情况
各类学校的课程开设情况还是很不一样的,我们发现不同层次学校的开课状况也不同。
985高校大数据专业上课现状:
大一课就很多简直就是高四,一周十多节课天天早八,睡不了几天午觉,因为下午第一节也总是有课。因为课多,作业也多,大一两个学期都在和数学分析作斗争,一旦有一点没听懂,之后想跟上就非常困难了。每章作业都是正反面满满的好几张作业纸。期末也需要刷很多的题,找很多模拟卷做。和高三真的没有什么区别。
而且那些编程语言的课比如Java,c++光是理解清楚就很难了,学操作基本靠上机课。在自己电脑上装软件装了好几天,装好了莫名其妙的bug还特别多。期末大作业是设计小游戏,虽然给了两周时间,还是熬了很多的夜改bug,准备应对老师的提问。在这期间发现编程语言老师能给你讲的只是冰山一角,实际操作有很大一部分都是要自己上网查的。所以一定要有比较强的检索信息能力和自学能力。
二本三本院校学习现状:
学校的人才培养方案的通病:定位不清晰,我们专业其实在人工智能方向钻研深入一些。至于大数据相关技术,不得不承认教得比较粗浅。这是源于大数据相关知识比较难,需要大量知识铺垫才能理解,加之现在掌握大数据技术的老师较少(至少我们学校),大家都是现学现卖,教学质量不能说好。这种情况下,只能自己找出路,从网上找资源自学。
02
大数据专业的就业前景:
社会对大数据专业人才需求量激增,如今大数据人才呈现爆发式发展与严重人才荒并存的尴尬景象,中国人工智能人才缺口超过500万,大数据人才缺口高达150万。人才少,但是企业对于人才的需求却丝毫不减。最近几年大数据也将会是未来最有发展前景的行业之一。
大数据技术与应用专业市场需求旺盛,对应岗位有大数据开发工程师、爬虫工程师、数据分析师、数据科学家、数据挖掘工程师、机器学习工程师等;
薪资上,大数据入门月薪已经达到了8K以上,工作1年月薪可达到1.2W以上,具有2-3年工作经验的人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。
目前,大到世界500强,BAT这样的公司,小到创业公司,他们都需求数据人才。所以学习大数据专业的前景和形势客观来说是很好的。
03
学习建议
可能还会有些人觉得自己担心学不学得来,这里给一些参考点,符合下面特征的,不管男女都是适合学习大数据专业。
1.数学要学好
大数据专业需要有一定的数学基础,通识课部分就设置了三门数学课,统计学,计算机。建议考入大数据专业的童鞋,可以看看一些入门课,客观评估自己的数学能力,同时看下上面“数据科学与大数据技术专业简介”,如果数学能力很差,会造成挂科过多、学习压力过大、就业困难等不良后果。
2.有耐心有毅力
大数据专业和计算机专业比较像,是注重实践的专业。学生需要独立编写程序,对程序进行修改与调试,需要注意每一个细节才能顺利查错并运行程序。有耐心有毅力的学生显然更能坐得住,心浮气躁的学生则需要一番磨练才能成功。
3.提升自主学习能力
一般情况下,大数据专业无法向学生传授大数据核心技术之外的知识技能,如果学生需要进入全新领域去实习就业,就必须要迅速掌握新领域的相关知识。假如学生到金融行业从事数据挖掘工作,就必须对金融产品及用户有所了解。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07