
前景非常好!世界经济论坛《2023年未来就业报告》显示,未来5年内增长最快的十大岗位包括了数据分析师和科学家、数字化转型专业人员。
数据分析分两种:第一种技术流,即数据工程师,算法工程师等等,重点是算法能力和编程能力,核心要打磨自己的编程基础,熟悉主流算法。第二种业务流,即数据分析师,商业分析师等等,熟练使用常用分析软件即可,懂分析方法论,有行业认知,门槛较低,上升空间较大,重点是具备解决实际的商业问题的能力。
数据分析师上升空间很大,如果想躺平,那数据分析师不是特别合适,数据分析岗位具备以下特点,请谨慎考虑要不要做。
1.辅助型岗位
数据分析师们经常会收到“我这里有一份数据,你帮我分析分析呗”这类没有明确需求的任务,往往经过在我们一顿自认为是金牌讲师的操作之后,得到的反馈却是一个又一个的灵魂拷问:
· 这些我早知道了,你分析了些啥?
· 环比下降了3%,那所以呢,能不能给点有价值的结论?
· 你分析了一轮,我还是不知道下一步要怎么做?
其中的本质原因,就是很多数据分析师只站在统计学的角度去分析,迷恋数值的游戏,而不是从业务的角色出发,通过数据解决业务问题。
2.需要有解决问题的能力
数据分析是一门从数据中发现问题解决问题的技术,它是以结果为导向,核心在于解决问题,所以极度考验个人数据分析思维的能力。从事这个岗位人,做得好的可以直接影响决策,指导公司业务;做得一般的人能够搭建业务的指标体系,定期写报告,辅助业务运行;最底层的大概就沦为取数机了。大部分人现在只能做到一般。
比如,老板给了你公司App的一周日活跃率,交给你以下任务:
(1)从数据中你看到了什么问题?你觉得背后的原因是什么?
(2)提出一个有效的运营改进计划。
你可能有这样的感觉:
这些症状是大部分数据分析相关从业人员的真实日常写照。
只要你掌握常用的分析方法,数据分析思路自然就有了。根据业务场景中分析目的的不同,可以选择对应的分析方法。
3.跨行难度比较高
需要数据分析师的行业很多,尤其现在各行各业都在做数字化转型,比如电商、互联网等,但不同行业的数据分析业务逻辑上并不相通,比如你之前做的电商的数据分析,那你接下来想转行做金融数据分析难度就非常大,想要做其他行业的数据分析就要从零开始。
最后,虽然有那么多问题,但数据分析还是一门值得从事的岗位。
一个数据分析师要想长久的干下去,建议做到以下三点:
第一,必须要扎根于业务,我们的工作从业务中来也会回到业务中去,核心在业务;
第二,必须要掌握核心技术,“业务是核心竞争力,技术是第一生产力”,这里的核心技术既包括了SQL,Excel,Python,Bi软件等各种工具的掌握,也要掌握各类统计学算法,要懂原理、优缺点,知道在什么情况下用什么算法。
第三,要不断地思考,从业务的角度理解数据,从数据中挖掘规律,用规律去指导业务,这是个完整的闭环。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30