京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用户标签体系与用户画像属于用户微观视角下的数据分析,用户标签是进行用户画像的基础,用户画像可以辅助业务人员制定用户分群策略,用户分群在企业战略,用户运营,风险防控方面具有广泛的应用,
在移动互联网高速发展的今天,各企业的营销成本逐渐增加,追求千人千面,精准营销已经深入企业数字化转型,并逐渐成为企业营销战略的核心部分,那么用户标签体系应该如何设计呢?我们经常接触的指标跟标签有何区别?用户画像报告如何编写呢?为什么要设计标签体系和用户画像呢?用户画像和预测型模型之间的关系是什么呢?应该如何实现精准的广告投放呢?
实现精准投放的本质是识别目标消费群体,主要通过两个维度来识别,第一个维度是识别目标消费群体的消费意愿,第二个维度是识别目标消费群体的消费能力,一般来说,有消费意愿但无消费能力,我们可以认为是示来的潜在用户,有消费能力没有消费意愿,则是错误定位。只有这两个维度的要求同时被满足,才能实现用户的精准定位,那么该APP目前的数据资源是否能满足这两个要求,从而实现用户的精准营销呢?该 APP广告推送主要有以下特点。
1)基于大数据分析,包括分析用户搜索,朋友圈行为,以及朋友圈图片内容。2)涉及自然语义理解,图像识别等技术。3)不仅是推送广告服务,也是对企业人员智能技术的试验反馈。
识别目标消费群体的两个维度是消费意愿和消费能力。
先看第一个维度,目标消费群体的消费意愿的识别。在用户洞察的过程中有一句话,“当你在凝望深渊的时侯,深渊也在凝望你。”这句话我们可以简单理解为当一个人对某件物品有需求时,在寻求此物品相关信息的时候会留下痕迹,而商家可以获取并分析这些痕迹,从而推测用户的内在需求。以宝马广告投放为例,可以通过用户朋友圈的以下信息识别目标用户。
只要用户在使用APP软件的过程中留下以上痕迹,我们就可以将此用户打上“对宝马汽车感兴趣”的标签,这些方法都是从识别目标消费群体的消费意愿入手的,用户APP海量的用户行为数据,识别“想买宝马汽车”的用户。
别外很多APP软件还有一个杀手锏—搜索功能。在商业层面,搜索功能可以让用户主动提出诉求,搜索服务商,在方便用户查找信息的同时,也获取了非常有价值的用户需求信息。因数用户搜索的关键词一般是用户感兴趣的内容,如用户近期经常搜索一些高端品牌汽车的型号,表明用户极有可能近期有购买高端品牌汽车的需求,正在使用搜索功能进行信息的获取,一般而言,搜索关键词所反映的用户需求比其它用户行为所反映的用户需求的准确度要高。
同时,我们还可以对此用户的圈子打标签,也就是通过社交圈子进一步定位用户,例如,某运营商曾经在201X年统计用户通信好友中使用IPHONE的比例,若该比例超过30%,则可以将此圈子定义为“IPHONE亲密用户群体“,从而对些圈内未购买IPHONE手机的用户推送IPHONE产品广告来刺激消费。
当某个用户同时符合以上两个维度的条件,即同时具备消费意愿和消费能力时,我们就可以对其进行该产品的广告推送。
总结一下,用户标签体系和用户画像是用户微观视角下的数据分析工具。用户标签是用户画像的基础,通过对用户行为和属性进行分析和标记,可以更好地理解和描述用户的特征和需求,从而辅助业务人员进行用户分群和精准营销。
用户标签体系的设计需要考虑企业的业务需求和目标,以及可用的数据资源。通过分析用户的消费意愿和消费能力等维度,可以识别目标消费群体,并为其打上相应的标签。例如,在宝马广告投放的案例中,可以通过分析用户在社交媒体上的行为、关注的公众号、评论和转发的内容等来识别对宝马汽车感兴趣的用户,并为其打上相应的标签。
用户画像报告是对用户画像结果的总结和呈现,可以包括用户的基本信息、兴趣爱好、消费习惯等方面的描述。编写用户画像报告需要结合用户标签和其他相关数据,以清晰、简洁的方式呈现用户的特征和需求,帮助业务人员更好地理解用户并制定相应的营销策略。
设计标签体系和用户画像的目的是为了实现精准营销和个性化服务。通过深入了解用户的特征和需求,企业可以更好地定位目标消费群体,提供符合其需求的产品和服务,从而提高用户满意度和业务效果。
与用户画像相关的预测型模型可以通过对用户历史行为和标签数据的分析,预测用户未来的行为和需求。例如,可以使用机器学习算法构建用户购买意向预测模型,根据用户的历史购买记录、浏览行为等因素,预测用户是否有购买某个产品的意向。用户画像和预测型模型之间的关系是,用户画像提供了对用户的综合描述和理解,而预测型模型则基于用户画像和历史数据进行预测和推断。
总之,用户标签体系和用户画像是帮助企业理解用户需求和制定精准营销策略的重要工具,通过对用户行为和属性的分析和标记,可以实现个性化服务和精准营销,提升用户体验和业务效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20