京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在机器学习中,数据集划分是一项重要的任务,它将可用的数据分为训练集、验证集和测试集,以支持模型的开发、调优和评估。合理的数据集划分方法可以提高模型的泛化能力和性能。以下是几种常见的数据集划分方法:
简单随机划分: 这是最基本的数据集划分方法之一。它通过随机地将数据样本分配给不同的集合来创建训练集、验证集和测试集。通常,训练集占总数据量的70-80%,验证集和测试集各占10-15%。这种方法简单易行,但可能会导致划分不均衡,特别是在数据集较小时。
分层随机划分: 分层随机划分考虑到了类别分布的平衡性,尤其适用于分类问题。它确保每个类别在训练集、验证集和测试集中的比例相近。这样可以避免某些类别在训练过程中得到较少的表示,从而影响模型的性能。
时间序列划分: 对于时间序列数据,如股票价格、气象数据等,随机划分可能不合适,因为时间上的先后关系对模型的性能有重要影响。常见的时间序列划分方法是按照时间顺序将数据集划分为训练集、验证集和测试集。通常,训练集包含较早的数据,验证集包含中间的数据用于模型选择,而测试集包含最新的数据用于最终评估。
K折交叉验证: K折交叉验证是一种常用的模型评估方法。它将数据集划分为K个互不重叠的子集,称为折。其中K-1个折用作训练集,剩余的1个折用作验证集。通过多次重复这个过程,每个折都充当一次验证集,可以更全面地评估模型的性能。最后,将K次评估的结果取平均值得到最终结果。
留一法: 留一法是K折交叉验证的特例,其中K等于数据集的样本数量。在每一轮中,只有一个样本被用作验证集,其余样本作为训练集。由于需要迭代多次,留一法计算成本较高,通常适用于数据集较小的情况。
无论使用何种划分方法,数据集的划分应该遵循以下原则:
数据集划分是机器学习中关键的步骤之一。不同的划分方法适用于不同类型的数据和问题。合理地进行数据集划分可以帮助我们开发出更具泛化能力和稳定性的机器学习模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16