
【专家讲师】
李御玺 (Yue-Shi Lee),国立台湾大学计算机工程博士,铭传大学计算机工程学系教授兼系主任暨所长,铭传大学数据挖掘中心主任,厦门大学数据挖掘中心顾问,中国人民大学数据挖掘中心顾问。其研究领域专注于数据仓库、数据挖掘、与文本挖掘。
在其相关研究领域已发表超过260篇以上的研究论文,同时也是国科会与教育部多个相关研究计划的主持人。服务过的客户包括:中国工商局、中信银行、台新银行、联邦银行、新光银行、 新竹国际商业银行(现已并入渣打银行)、第一银行、永丰银行、远东银行、美商大都会人寿、嘉义基督教医院、台湾微软、零售业如赫莲娜(Helena Rubinstein)化妆品公司、特立和乐(HOLA)公司、航空公司如东方航空公司、中华航空公司、汽车行业如福特(Ford)汽车公司;政府行业如国税局等。
【课程大纲】
第一天 进阶机器学习技术(半监督式学习、利润最大化学习、目标类别不平衡学习、集成学习)及实操案例分享
传统模型评估方法与利润最大化评估方法
增益图与利润图
案例一:利润最大化模型实作: 以产品营销模型为例 (2018/12考题)
目标类别不平衡的问题
目标类别不平衡的处理方式
案例二:目标类别不平衡模型实作: 找出有资金需求的中小企业借贷户并销售其贷款产品 (2019/12考题)
案例三:半监督学习模型实作: 以电信业客户流失模型为例 (2019/6考题)
第二天 英文文本分析技术、Hugging Face经典英文模型使用及实操案例分享
案例五:英文文本分析模型实作: 从贴文的信息中预测此贴文是否能获得高响应 (2021/3)
案例六:英文文本分析模型实作: 从贴文的短信息中识别此贴文的情绪 (2021/6)
案例七:英文文本分析模型实作: 从使用者过去的观影行为、电影名称以及电影剧情描述的信息,预测使用者对电影的评分 (2022/06)
案例八:英文文本分析模型实作: 从产品描述的信息中,预测产品类别 (2022/12)
第三天 中文文本分析技术、Hugging Face经典中文模型使用及实操案例分享
中文文本数据预处理方法 (分词、词性标注、停用词处理、关键词撷取、词嵌入模型)
案例九:中文文本分析模型实作: 从产品的消费者评论中识别此评论的情绪是正评或负评 (2021/09)
案例十:中文文本分析模型实作: 从评论信息中识别此评论是否为不当的评论 (2021/12)
案例十一:中文文本分析模型实作: 从产品的图片及产品的描述信息中,预测哪些是相同的产品 (2023/03)
案例十二:中文文本分析模型实作: 从文章的描述信息中,预测此文章是否由AI所产生出来的 (2023/06)
【课程收益】
透过本课程的培训,上课学员应具备以下能力:
(1) 掌握利润最大化学习技术,并应用于产品营销模型的建置;
(2) 掌握目标类别不平衡学习技术,并应用于银行贷款模型的建置;
(3) 掌握半监督式机器学习技术,并应用于电信客户流失模型的建置;
(4) 掌握并实现集成学习技术,并应用于共享住宿日租价格模型的建置;
(5) 掌握英文文本分析的流程及预处理技术;
(6) 实作社群网站的英文贴文响应分析模型;
(7) 实作社群网站的英文贴文情绪分析模型;
(8) 实作电影网站的电影评分模型;
(9) 实作产品分类预测模型;
(10) 运用Hugging Face的大型英文预训练语言模型解决英文文本分析的问题;
(11) 掌握中文文本分析的流程及预处理技术;
(12)实作消费者评论的情绪分析模型;
(13) 实作不当评论的分析模型;
(14) 实作从产品的图片及产品的描述信息,预测相同产品的分析模型;
(15) 实作AI文章鉴识预测模型;
(16) 运用Hugging Face的大型中文预训练语言模型解决中文文本分析的问题;
【课程特色】
1.课程案例涵盖多个领域:课程案例涵盖了产品营销、中小企业借贷、电信业客户流失、共享住宿价格预测等多个领域,使学员能够应对不同领域的实际问题,并灵活运用机器学习技术解决挑战。2.强调文本分析技术:课程特别关注英文和中文文本分析技术,学员将学习英文和中文文本数据的预处理方法、情感分析、关键词提取等技术,培养学员在文本数据处理方面的专业能力。3.结合Hugging Face经典模型:课程将介绍Hugging Face经典英文和中文语言模型的使用,并与传统机器学习模型进行比较。学员将了解最新的自然语言处理技术,并能够评估和选择适合的模型来解决实际问题。【课程对象】
1.机器学习从业人员:对机器学习有一定基础的从业人员,希望进一步深入学习和应用进阶技术的专业人士。2.数据分析师:希望扩展文本分析技术和应用范围,提升在文本数据处理和解决方案设计方面的能力的数据分析师。3.业务决策者:希望了解机器学习在实际业务中的应用,掌握评估模型效果和选择合适模型的知识,以指导业务决策的管理者。其他对机器学习和文本分析感兴趣的学习者:对机器学习和文本分析技术感兴趣的学生、研究人员或爱好者,希望通过该课程系统学习相关知识和技能。
【课程时间】2023年8月25日-27日
【课程收费】
面授4200元/人,远程直播3600元/人。(CDA持证人会员、全日制在读本科、研究生享九折优惠)
【授课时间】
上午 9:00-12:00,下午13:30-16:30。
【其他安排】
1.报名即可获取课程案例数据集2.获取python数据分析视频预习课程3.面授同学课程第二天组织晚宴讨论4.课程录播视频有效期一年
详情咨询客服老师
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10