
来自CDA考试中心的通知!
亲爱的考生:
诚挚地向您通告,我们即将在 2023 年 10 月 31 日实施 CDA 认证考试的重大更新。这是为保持认证考试的内容与实际行业需求、最新技术及其发展同步而进行的必要步骤, 使 CDA 认证更具有前瞻性、实用性以及严谨性。
这次更新将涉及考试大纲的修改以及考试题目的全新设计,新的题目将更加强调对于应用能力的测试,更加注重考查各位考生在实际工作中所能应用的技能。
我们建议所有的考生尽早开始准备新的考试大纲,这将有助于你们在考试中取得更好的成绩。
Level I 考纲主要更新内容如下【点击查看】:
1. 增加趋势分析法的相关内容
2. 增加指标体系的相关内容,主要关注指标的设计和应用
3. 增加数据管理的相关内容,主要关注数据标准和数据质量的管理
4. 降低了数据结构和业务数据分析的考察占比
5. 调高了数据安全和数据立法等内容的考察占比
6. 业务分析方法做了部分更新,并更名为数据分析方法
Level II 考纲主要更新内容如下【点击查看】:
1. 增加数据治理的内容
2. 增加指标体系的内容
3. 调整各部分的得分占比
4. 标签体系与用户画像的内容调整到和教材一致
5. 更新数据分析模型的部分内容
6. 更新统计分析的部分内容
本次更新后,Level II 考试内容将与教材内容一一对应,推荐各位考生以教材为核心复习资料。
Level III 考纲主要更新内容如下【点击查看】:
1. 增加 LightGBM 等集成算法内容
2. 增加 Pipeline 内容
3. 增加随机参数搜索和贝叶斯搜索等调参内容
4. 增加深度学习的优化算法,正则化,自编码器与表示学习等内容
5. 增加 Transformer 架构的内容
6. 增加大语言模型的架构,使用,微调,Agent 等内容
7. 降低了概论,数据处理与特征工程,文本分析,机器学习基础算法等内容的占比
8. 删除了朴素贝叶斯等过时算法,删除了自动机器学习的部分内容
9. 部分文本分析,特征转换,SVM,序列模式等内容的考察要求降为领会
本次 Level III 更新将在2023年10月1日正式实施,新的考纲和新的题目将会同时启用。
请各位考生注意,从那时起参加的所有考试将根据新的大纲进行,并使用新的题目。为了帮助大家适应这次的更新,CDA 将提供一系列的备考资源,包括新考试大纲的详细介绍、新题目类型的模拟题,以及一些实用的学习资源。我们建议所有的考生尽早开始准备新的考试大纲,这将有助于考生在考试中取得更好的成绩。
感谢大家的理解和配合,希望这次的更新能帮助大家更好地提升自己的数据分析技能,并在自己的技术道路上更进一步。
祝各位考试顺利!
通知和新大纲详见:【点击查看】
为此,CDA北京授权中心准备了一系列直播对此次大纲升级做详细解读,大家可以点击下放预约卡片预约直播,关注视频号获取后续更多更新。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30