
编辑:Mika
作者:唐一楠 CDA Level Ⅰ 持证人
唐一楠 LEVEL Ⅰ 持证人
大家好,我叫唐一楠,是一名CDA Level Ⅰ 持证人。在这里很高兴跟大家分享一下我的备考心得。
我是数据科学与大数据技术专业的大四学生,就读于中南财经政法大学统计与数学学院。
大四上学期考研失利后,我打算找数据分析相关的工作。我认为如果能拿到CDA的证书的话,可以在求职过程中让我具有有一定的竞争力。
因为我是大四,学校已经没有什么课了,每天有很多空闲时间,大概每天学习两个小时,一直看视频课程,等到所有课程过完之后,就开始做模拟题。大概复习了一个月时间吧。
我看视频课程时,用的是2倍速,很快过一遍,没听懂的地方重复几次,仔细看看。
在学习数据库部分时,跟着课程自己亲手操作下,会对 SQL 语言更加熟悉,有助于我们记忆。等到全部课程听完做模拟题的时候,我是一个单元一个单元的做,盯对过后将知识点添加到课件中,再将整个单元过一遍。
总之,要提高自觉性,课程中没听懂的知识点要主动上网查找理解记录。
感觉备考中遇到的难点就是第六章,关于电子商务业务方面我是第一次接触,很多的专业术语我都没有听过,像雪花模型星座模型这些,都是很难理解的东西。所以对于这方面的知识我会查找一些课外的资料,积极上网去补全自己的知识漏洞。
接下来就是统计学方面的知识,虽然我自己是学统计的,但是这一节还是很有难度,公式和分布都要去理解,还要知道各个检验要用在什么情形中,总之就是要多看一些例子,想清楚它们的区别。
统计与概率论的部分我推荐贾俊平的《统计学》,里面对各种分布,区间分布,假设检验等讲述的都很清楚易懂,对考试有很大帮助。
Level Ⅰ 中的其他板块我并没有看额外的书籍,跟着官网课程中的视频认真学习就好了。
在我看来,获得CDA Level Ⅰ 认证是对自己目前在数据各方面能力的一个肯定,希望今后自己能够在数据分析的路上越走越远,学到更多的知识和技能,提升自己,实现自我价值。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10