
在数据分析中,有许多常用的统计指标可以帮助我们理解和描述数据集。下面是一些常见的统计指标:
平均数(Mean):平均数是数据集中所有数值的总和除以数据点的数量,用于表示数据的集中趋势。
中位数(Median):将数据集按大小排列,中位数是位于中间位置的数值,将数据分为两部分,使得有一半的数据比它大,另一半比它小。中位数对异常值不敏感,适合用于偏态分布的数据。
众数(Mode):众数是数据集中出现频率最高的数值,大多用于描述离散型数据。
标准差(Standard Deviation):标准差是方差的平方根,用于衡量数据的离散程度。标准差越大,表示数据点相对于平均数的差异越大。
百分位数(Percentile):百分位数是将排序后的数据集划分为等大小的百分位段,可用于描述数据的分布情况。例如,第75百分位数表示有75%的数据小于或等于该值。
峰度(Kurtosis):峰度衡量数据分布的尖锐程度。正常分布的峰度为3,高于3表示比正态分布更陡峭,低于3表示比正态分布更平缓。
相关系数(Correlation Coefficient):相关系数衡量两个变量之间的线性关系强度和方向。它的取值范围在-1到1之间,接近-1表示负相关,接近1表示正相关,接近0表示无相关。
回归分析中的R-squared:R-squared是回归模型拟合优度的指标,表示因变量的变异程度可以由自变量解释的比例。取值范围从0到1,越接近1表示模型拟合得越好。
样本标准误差(Standard Error of the Mean):样本标准误差表示样本均值与总体均值之间的差异,用于估计样本均值的精确性。
置信区间(Confidence Interval):置信区间是对总体参数估计的范围,表示我们有多大的置信度认为该区间包含真实的参数值。
这些统计指标在数据分析中扮演着重要的角色。它们可以帮助我们了解数据的集中趋势、分布形态、离散程度和相关关系,从而作出准确的推断和决策。然而,在使用统计指标时,需要注意数据的特点以及所采用的方法的局限性,避免产生误导性的结论。同时,结合可视化技术,更能直观地展示数据的特征和趋势,为数据分析提供全面的支持。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28