
SPSS分析技术:Pearson相关、Spearman相关及Kendall相关
通过文章(点击蓝字即可回顾阅读):数据分析技术:数据关联性分析综述,我们知道数据的关联性分析可以分为两个大类:相关性分析和回归分析。根据数据种类的不同(定距、定序和定类),它们又有不同的分析方法。可以通过下面的思维导图帮助记忆:
常用的相关性分析包括:皮尔逊(Pearson)相关、斯皮尔曼(Spearman)相关、肯德尔(Kendall)相关和偏相关。下面介绍前三种相关分析技术,并用实际案例说明如何用SPSS使用这三种相关性分析技术。三种相关性检验技术,Pearson相关性的精确度最高,但对原始数据的要求最高。Spearman等级相关和Kendall一致性相关的使用范围更广,但精确度较差。
Pearson相关
皮尔逊相关是利用相关系数来判定数据之间的线性相关性,相关系数r的公式如下:
数据要求
正态分布的定距变量;
两个数据序列的数据要一一对应,等间距等比例。数据序列通常来自对同一组样本的多次测量或不同视角的测量。
结论分析
在皮尔逊相关性分析中,能够得到两个数值:相关系数(r)和检验概率(Sig.)。对于相关系数r,有以下判定惯例:当r的绝对值大于0.6,表示高度相关;在0.4到0.6之间,表示相关;小于0.4,表示不相关。r大于0,表示正相关;r小于0,表示负相关。虽然相关系数能够判别数据的相关性,但是还是要结合检验概率和实际情况进行判定,当检验概率小于0.05时,表示两列数据之间存在相关性。
Spearman相关
当定距数据不满足正态分布,不能使用皮尔逊相关分析,这时,可以在相关分析中引入秩分,借助秩分实现相关性检验,即先分别计算两个序列的秩分,然后以秩分值代替原始数据,代入到皮尔逊相关系数公式中,得到斯皮尔曼相关系数公式:
数据要求
不明分布类型的定距数据;
两个数据序列的数据一一对应,等间距等比例。数据序列通常来自对同一组样本的多次测量或不同视角的测量。
结论分析
在斯皮尔曼相关性分析中,也能够得到相关系数(r)和检验概率(Sig.),当检验概率小于0.05时,表示两列数据之间存在相关性。
Kendall相关
当既不满足正态分布,也不是等间距的定距数据,而是不明分布的定序数据时,不能使用Pearson相关和Spearman相关。此时,在相关分析中引入“一致对”的概念,借助“一致对”在“总对数”中的比例分析其相关性水平。Kendall相关系数计算公式如下:
Kendall相关实质上是基于查看序列中有多少个顺序一致的对子的这个思路来判断数据的相关性水平。在Kendall相关性检验中,其核心思想是检验两个序列的秩分是否一致增减。因此,统计两序列中的“一致对”和“非一致对”的数量就非常重要。下面举例说明Kendall相关系数的计算过程:
假设有两个数据序列A和B的秩分序列分别是{2,4,3,5,1},{3,4,1,5,2},即相对应的秩对为(2,3)(4,4)(3,1)(5,5)(1,2)。在按照A的秩分排序后,得到新的秩对(1,2)(2,3)(3,1)(4,4)(5,5),此时B的秩分序列变成了{2,3,1,4,5}。在这种情况下,针对第一个B值2,后面有3,4,5比它大,有1比它小,所以一致对为3,非一致对为1;第二个数字3,有4,5比它大,有1比它小,所以一致对为2,非一致对为1;依次类推,总共有8个一致对,2个非一致对。即Nc=8,Nd=2。
数据要求
适用于不明分布的定序数据;
Pearson相关适用于正态分布定距数据;Spearman相关适用于不明分布定距数据;Kendall相关适用于不明分布定序数据。
结论分析
在肯德尔相关性分析中,能够得到两个数值:相关系数(r)和检验概率(Sig.),当检验概率小于0.05时,表示两列数据之间存在相关性。
案例分析
现在有一份《学生成绩数据》,如下图所示。请分析其中的语文、数学、英语、历史、地理成绩之间的相关性。
解题思路
观察图中数据可知,需要分析的数据都是定距数据,而且它们来自同一组样本(同一批学生)的多次多视角测试(不同学科考试),可以使用Pearson相关分析和Spearman相关分析。先对原始数据进行正态分布检验,对于满足正态分布检验的变量使用Pearson相关性分析,不满足正态分布检验的变量则使用Spearman等级相关检验。
解题步骤
1、利用【分析】-【非参数检验】-【旧对话框】-【1样本K-S】命令对语文、数学、英语、历史和地理成绩进行正态分布检验。
2、利用【分析】-【相关】-【双变量】命令,在相关系数中选择【Pearson】,对语文、数学、英语和地理成绩进行Pearson相关性检验。
3、利用【分析】-【相关】-【双变量】命令,在相关系数中选择【Spearman】,对历史、语文、数学、英语和地理成绩进行Spearman相关性检验。
结果解读
1、正态性检验结果;
发现除历史以外,其它数据变量的检验概率都大于0.05,都符合正态分布。
2、在皮尔逊相关分析中,语文、数学、英语和地理成绩之间的所有检验概率都大于0.05,说明它们之间都不存在相关性;同时,皮尔逊相关系数都小于0.4,也证明了它们之间没有相关性。
3、在斯皮尔曼相关分析中,历史、语文、数学、英语和地理之间的检验概率除了地理和语文之间小于0.05以外,其它都大于0.05。但这不能说明地理与语文成绩之间存在相关性。观察它们的相关系数为0.263,这说明它们之间也不存在相关性。在确定变量之间相关性时,应该结合检验概率与相关系数进行分析。不能只看其中一个数值就确定变量之间的相关性。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10