京公网安备 11010802034615号
经营许可证编号:京B2-20210330
特征选择在机器学习中是一个重要的预处理步骤,它可以用于降低维度、减少冗余信息和改善模型性能。在本文中,我们将介绍一些常见的特征选择方法。
过滤式特征选择(Filter-Based Feature Selection):这种方法通过对特征进行评估和排序来选择最相关的特征。常用的评估指标包括相关系数、卡方检验、互信息等。过滤式特征选择不考虑具体的机器学习算法,而是独立地对特征进行评估和选择。
包裹式特征选择(Wrapper-Based Feature Selection):与过滤式特征选择不同,包裹式特征选择方法直接使用特定的机器学习算法来评估特征子集的质量。它通过在每个子集上训练分类器并根据分类器的性能进行评估来选择最佳特征子集。该方法通常更加准确,但计算成本较高。
嵌入式特征选择(Embedded Feature Selection):嵌入式特征选择方法结合了过滤式和包裹式特征选择的优点。它在训练机器学习模型时自动进行特征选择。例如,L1正则化和L2正则化的线性回归模型可以在训练过程中自动选择相关特征。
主成分分析(Principal Component Analysis, PCA):PCA是一种常见的降维方法,它通过线性变换将原始特征投影到一个新的低维空间。投影后的新特征被称为主成分,它们能够保留原始数据的大部分信息。选择前几个主成分作为特征可以实现降维和去除冗余信息的目的。
基于树的特征选择(Tree-Based Feature Selection):基于树的特征选择方法使用决策树或随机森林等算法来评估特征的重要性。这些方法通过测量特征在树构建过程中的贡献度来选择最佳特征。重要性较高的特征被保留,而不重要的特征则被丢弃。
基于稳定性的特征选择(Stability-Based Feature Selection):这种方法通过对输入数据进行轻微的扰动,然后观察特征选择结果的稳定性来评估特征的重要性。如果一个特征在多次扰动下都被选择为重要特征,那么它被认为是稳定的,并被选入最终的特征子集。
特征选择在机器学习中是一个关键步骤,可以帮助我们减少维度、降低计算成本,并提高模型性能。常见的特征选择方法包括过滤式、包裹式和嵌入式特征选择,以及主成分分析、基于树和基于稳定性的特征选择方法。选择适合问题和数据集的特征选择方法,可以提高模型的泛化能力和解释性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14