京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘是一种通过发现模式、关联和趋势来提取有价值信息的过程。在数据挖掘中,存在许多常用的算法,用于处理和分析各种类型的数据。以下是一些在数据挖掘中常用的算法。
决策树:决策树是一种基于树状结构的分类和回归方法。它通过将数据集划分为不同的子集,并根据特征属性进行决策,从而生成可以预测目标变量的模型。
支持向量机(SVM):SVM是一种监督学习算法,用于分类和回归分析。它通过找到一个最优超平面来分离不同类别的数据点,并将其推广到新的未标记数据点上。
朴素贝叶斯:朴素贝叶斯是一种基于贝叶斯定理的概率分类算法。它假设每个特征之间相互独立,并根据训练数据计算类别的概率分布,从而对新样本进行分类。
K均值聚类:K均值聚类是一种无监督学习算法,用于将数据点划分为预定数量的簇。它通过将数据点分配到离其最近的簇中心来实现聚类,直到达到预定的迭代条件。
随机森林:随机森林是一种集成学习算法,通过将多个决策树组合成一个模型来提高预测准确性。它通过在原始数据的不同子样本上构建多个决策树,并对结果进行综合来减少过拟合风险。
神经网络:神经网络是一种受生物神经系统启发的机器学习方法。它由多个神经元(或节点)组成的层次结构,并通过调整权重和偏差来学习输入和输出之间的关系。
关联规则:关联规则用于发现数据集中的项集之间的关联关系。它可以帮助找到频繁出现在一起的项,并根据频繁项集生成规则,以便进行推荐或其他应用。
主成分分析(PCA):主成分分析是一种降维技术,用于将高维数据转换为低维空间。它通过找到数据中最大方差的方向,将数据投影到新的坐标系中,从而实现数据的压缩和可视化。
集成学习:集成学习通过结合多个基本模型的预测结果来提高整体的准确性和鲁棒性。它可以使用投票、平均或堆叠等技术进行模型融合。
聚类算法:除了K均值聚类之外,还有其他聚类算法,如层次聚类、DBSCAN和谱聚类等。这些算法根据数据的相似性将样本划分为不同的组或簇。
在实际应用中,具体选择哪种算法取决于数据集的特征、问题的性质以及挖掘的目标。数据挖掘领域还在不断发展,新的算法和技术也在不断涌现,为解决各种挑战提供更多可能性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27