京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘是从大量数据中挖掘出有用的信息和模式的过程。它涉及多个步骤,从数据收集到模型评估。以下是数据挖掘的常见流程步骤:
理解业务目标:在进行数据挖掘之前,需要明确业务目标和问题。确定要解决的问题以及所需的结果有助于指导整个流程。
数据收集:在这一阶段,需要收集与业务目标相关的数据。数据可以来自各种来源,如数据库、文件、传感器等。确保数据收集完整、准确,并且包含足够的样本量。
数据清洗:数据往往存在噪声、缺失值和异常值等问题。在数据清洗阶段,需要处理这些问题,使数据变得可靠、一致并适合后续分析。常见的数据清洗操作包括去除重复数据、填补缺失值、处理异常值等。
数据集成:如果数据来自多个源头或多个数据表,需要将它们整合为一个统一的数据集。这涉及到对数据进行连接、合并和转换等操作,以便进行综合分析。
特征选择:在数据挖掘中,特征选择是非常重要的步骤。通过评估和选择最相关的特征,可以提高模型的准确性和效率。常用的特征选择方法包括统计分析、相关性分析、信息增益等。
特征转换:有时,原始数据集中的特征可能需要进行转换,以便更好地适应模型的要求。常见的特征转换技术包括标准化、归一化、离散化、主成分分析等。
模型选择:在这一阶段,需要选择适当的数据挖掘算法或模型来解决业务问题。根据问题的类型和数据的特点,可以选择分类、回归、聚类、关联规则等不同类型的模型。
模型训练:使用已选择的算法或模型对数据集进行训练。这涉及将数据集拆分为训练集和测试集,并在训练集上进行参数调整和模型训练。
模型评估:在完成模型训练后,需要对其进行评估。通过使用测试集来评估模型的性能和准确性,判断其是否达到预期的结果。常见的评估指标包括准确率、召回率、F1分数等。
模型优化:根据评估结果,可以进行模型的进一步优化。这可能涉及调整参数、改进特征选择或特征转换方法,以及尝试其他算法。通过反复迭代优化过程,可以不断提高模型的性能。
结果解释和应用:最后,需要解释和解读模型的结果,并将其应用于实际业务问题中。这可能涉及生成报告、可视化数据、制定决策等。
以上是数据挖掘的常见流程步骤。每个步骤都是相互关联且重要的,整个流程需要综合考虑数据的质量、特征选择、模型选择和评估等方面,以获得准确、可靠且有用的挖掘结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12