京公网安备 11010802034615号
经营许可证编号:京B2-20210330
挖掘算法是机器学习的一个分支,它是用于从数据集中提取出有意义的信息和模式的方法。在挖掘算法中,有许多不同的技术和算法可供选择,每种算法都有其独特的优点和适用范围。本文将介绍挖掘算法中最常用的几种算法。
关联规则挖掘是一种发现数据集中项之间频繁出现模式的算法。该算法通常应用于市场篮子分析、购物推荐系统、网络广告投放等领域。关联规则挖掘通过发现事务中各项之间的相关性来预测用户喜好、行为模式和趋势等信息。Apriori算法是其中最为流行的一种方法,它可以用来发现在数据集中经常同时出现的项集。
分类是一种基于监督学习的挖掘算法,它的目标是通过构建模型来预测新数据的类别。分类算法被广泛应用于邮件过滤、情感分析、医学诊断等领域。常用的分类算法包括决策树、朴素贝叶斯、支持向量机(SVM)等。
聚类是一种基于无监督学习的挖掘算法,它通过将数据集中相似的对象分组来发现隐藏在数据中的结构。聚类算法被广泛应用于市场细分、图像分析、网络流量分析等领域。常用的聚类算法包括k-means算法、层次聚类算法、DBSCAN算法等。
神经网络是一种模拟生物神经系统的计算模型,它可以通过对大量数据进行训练来发现数据中的模式和规律。神经网络被广泛应用于图像识别、语音识别、自然语言处理等领域。常用的神经网络模型包括多层感知机(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)等。
支持向量机(SVM)是一种基于统计学习的分类算法,它通过将数据投影到高维空间中来发现数据中的模式和规律。SVM被广泛应用于文本分类、图像分类、生物信息学等领域。SVM的优点在于可以避免维度灾难问题,同时具有很好的泛化能力。
总之,在挖掘算法中,常用的技术和算法是多种多样的。本文介绍了其中最常用的几种算法,包括关联规则挖掘、分类、聚类、神经网络和支持向量机。这些算法可以帮助我们从数据集中提取出有意义的信息和模式,在各个领域都有着广泛的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01