京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据清洗是数据处理中不可或缺的一个步骤,它可以去除数据中的错误和异常值,使得数据更加准确、可靠、适用于后续分析。下面将介绍数据清洗的具体流程。
收集数据 首先需要收集原始数据,可以通过多种方式获得,例如采集实验数据、爬取网络数据、获取公司内部数据等。
数据预览 在进行数据清洗之前,需要先对数据进行初步的观察和分析,了解数据的基本情况,包括数据类型、大小、格式、列名、行列数等。这可以帮助我们更好地理解数据,为后续的数据清洗和分析做好准备。
缺失值处理 缺失值是指数据中存在某些值没有被记录、测量或采集到,通常用NaN、NULL或NA表示。在进行数据清洗时,需要处理缺失值。处理方法包括填充缺失值、删除缺失值、插值法等。具体选择哪种方法取决于具体情况和数据类型。
异常值处理 异常值是指与其他观测值明显不同的观测值,可能是由于数据录入错误、测量仪器故障或人为操作等原因引起的。在数据分析中,异常值可能会对结果产生负面影响,因此需要进行异常值处理。处理方法包括删除异常值、替换为其他值、平滑处理等。
重复值处理 重复值是指在数据集中出现了相同的记录。重复值可能是由于数据源信息提交错误或重复采集而产生的。如果数据集中存在重复值,则需要对其进行处理,以避免影响分析结果。处理方法包括删除重复记录、去除完全重复的行、合并重复的行等。
数据类型转换 在进行数据清洗过程中,有时候需要将数据类型进行转换,使之更加适用于后续的分析。例如,将字符型数据转换为数值型数据、日期格式转换为时间戳格式等。
数据标准化 数据标准化是指将数据按照一定规则进行归一化或缩放,以便于不同尺度、不同量级的数据可以进行比较和分析。常用的方法包括Z-score标准化、MinMax标准化、log变换等。
数据筛选和子集提取 有时候,我们只需要分析数据集的某些部分,或者要对数据进行进一步剪裁。这时候,就需要进行数据筛选和子集提取。具体方法包括根据条件进行子集提取、按列进行选择或删除等。
数据整合和变换 在进行数据清洗时,有时候需要将多个数据集进行整合和变换,以便于后续的分析。例如,将多个表格进行合并、对数据进行聚合和透视等。
数据保存 最后,当完成了数据清洗后,需要将结果保存下来,以备后续分析使用。可以将处理后的数据保存为CSV、Excel、JSON等格式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12