
数据清洗是指将原始数据经过处理、筛选和转换等操作,以便让数据能够适合于分析、挖掘、建模等应用场景的一系列技术。数据清洗在数据科学领域中非常重要,因为数据质量对于后续的分析结果有着至关重要的影响。本文将介绍数据清洗常用的技术。
数据去重是指将数据集中重复的记录删除,以保证数据的唯一性。重复数据可能会导致分析结果出现偏差,故需要进行去重操作。数据去重可以通过使用Pandas库中的drop_duplicates()函数实现。
缺失值是指数据集中某些字段缺少数值或信息的情况。缺失值可能会导致分析结果不准确,需要进行处理。处理方法包括删除缺失值、用平均数、众数、中位数等统计量填充缺失值,也可以使用插值法来填充缺失值。
异常值是指数据集中与其他数据极其不同的值。异常值可能会对分析结果产生负面影响。我们需要找到并处理这些异常值。可以使用箱线图和离群点检测算法(例如Z-score离群点检测、IQR离群点检测)来找到异常值,并对其进行处理。
数据类型转换是指将一种数据类型转换为另一种数据类型。例如,将字符串类型转换为数值型、日期型等。在进行数据分析时,需要根据实际需求将数据转换为适当的类型。可以使用Pandas库中的astype()函数来实现数据类型转换。
数据归一化和标准化是一种重要的数据清洗技术,在特征工程中广泛应用。归一化是将数据缩放到[0,1]之间,标准化是将数据缩放为均值为0,方差为1。这些技术可以使不同的特征具有相同的权重,并且可以提高模型的准确性。
文本处理是指对自然语言文本进行分词、去停用词、词干提取、情感分析等操作。在处理文本数据时,需要根据实际需求选择相应的文本处理技术。常见的文本处理库包括nltk、spacy等。
数据集成是指将多个数据源中的数据合并到一个数据集中。在数据集成过程中,需要解决不同数据源之间的字段命名不同、数据格式不同、数据质量不同等问题。可以使用Pandas库中的merge()函数来实现数据集成。
数据采样是指从大型数据集中随机选择一部分样本进行分析,以减少计算时间和资源消耗。常见的数据采样方法包括随机采样、分层抽样、过采样、欠采样等。
数据转换是指将原始数据转化为能够被特定算法处理的格式。例如,将图像数据转换为向量、将文本数据转换为词向量等。数据转换通常是在特征工程中进行的,能够提高模型训练的准确性。
总结:
数据清洗是数据科学流程中非常重要的一步,它决定了后续的分析结果的准
确性和可靠性。常见的数据清洗技术包括数据去重、缺失值处理、异常值处理、数据类型转换、数据归一化和标准化、文本处理、数据集成、数据采样以及数据转换等。在实际工作中,需要根据具体业务需求选择相应的数据清洗技术。此外,在进行数据清洗时,还需要注意数据安全和隐私保护,避免泄露敏感信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14