
数据分析师主要做哪些方面?
一、数据收集
数据收集是数据分析的第一步,也是基础。数据分析师需要了解数据来源,确定收集数据的方法,并保证数据质量和数量。在工作中,数据分析师需要与数据工程师密切合作,了解数据存储和数据处理的技术细节。一般来说,数据收集包括以下几种方式:问卷调查、网络爬虫、数据库查询等。
对于数据分析师来说,了解数据来源和收集数据的方式非常重要。因为不同来源的数据质量和数量可能存在巨大差异。比如,通过网络爬虫获取的数据可能存在重复、缺失等问题,需要对数据进行清洗和去重;而通过问卷调查获取的数据则可能存在填写不完整、虚假等问题。
二、数据清洗和预处理
数据清洗和预处理是数据分析的重要环节,其目的是去除重复、缺失、异常值等对数据分析产生干扰的数据,使数据更加规范和纯净,为后续的数据分析和挖掘提供良好的基础。
在进行数据清洗和预处理时,数据分析师需要了解数据的分布和规律,找出异常值和离群点,并对其进行处理。同时,数据分析师还需要根据业务需求和数据分析目的,对数据进行分组、排序、筛选、聚合等操作,以便更好地展示数据和发现问题。
三、数据分析和挖掘
数据分析和挖掘是数据分析的核心环节,其目的是从数据中发掘有价值的信息和规律,为业务决策提供支持。在数据分析和挖掘过程中,数据分析师需要运用统计学、机器学习等方法,对数据进行深入分析,发现数据背后的规律和趋势。
在进行数据分析和挖掘时,数据分析师需要了解业务需求和数据分析目的,根据实际情况选择合适的方法和工具。比如,在进行描述性统计分析时,可以使用 Excel 等工具;在进行分类、聚类等机器学习算法时,可以使用 Python 等编程语言和相应的机器学习库。
四、模型建立和优化
模型建立和优化是数据分析的重要环节,其目的是将数据分析和挖掘的结果转化为可执行的模型,为业务决策提供支持。在模型建立和优化过程中,数据分析师需要运用统计学、机器学习等方法,对数据进行建模和分析,找出对业务决策有价值的规律和趋势。
在进行模型建立和优化时,数据分析师需要了解业务需求和数据分析目的,根据实际情况选择合适的方法和工具。比如,在进行分类、预测等建模时,可以使用 Python 等编程语言和相应的机器学习库。同时,数据分析师还需要对模型进行评估和优化,确保模型的有效性和可靠性。
五、报告输出和沟通
报告输出和沟通是数据分析的最后环节,其目的是将数据分析结果呈现给相关人员,以便业务决策。在报告输出和沟通时,数据分析师需要将数据转化为易读易懂的形式,如表格、图表等。同时,数据分析师还需要根据业务需求和数据分析目的,撰写详细的分析报告,对数据分析结果进行总结和解读。
在进行报告输出和沟通时,数据分析师需要了解受众需求和分析目的,根据实际情况选择合适的形式和内容。比如,在向管理层汇报时,可以使用PPT等演示形式;在向业务人员解释时,可以使用图表等易于理解的形式。同时,数据分析师还需要对报告进行优化和完善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28