
聚类分析是一种常用的数据分析方法,它可以将相似性较高的样本归为一类,并将不同类别的样本区分开来。在SPSS中,聚类分析包括两种连接方式:组内连接和组外连接。这两种连接方式有着不同的计算方法和应用场景。
一、组内连接
组内连接是指在聚类分析中,对于同一簇内的样本之间进行距离度量,并取其平均值作为该簇的代表性点与其他簇进行比较。具体来说,组内连接采用的是最短距离法(single linkage)、最长距离法(complete linkage)或者平均距离法(average linkage)。
最短距离法:该方法计算的是每个簇中距离最近的两个样本之间的距离。即假设簇A和簇B各有n个样本,则计算组内距离时需要计算A中的每个样本与B中的每个样本之间的距离,然后取其中最小值作为组内距离。
最长距离法:该方法计算的是每个簇中距离最远的两个样本之间的距离。即假设簇A和簇B各有n个样本,则计算组内距离时需要计算A中的每个样本与B中的每个样本之间的距离,然后取其中最大值作为组内距离。
平均距离法:该方法计算的是每个簇中所有样本之间距离的平均值。即假设簇A和簇B各有n个样本,则计算A中每个样本与B中每个样本之间的距离,然后将这些距离求和并除以n^2得到组内距离。
二、组外连接
组外连接是指在聚类分析中,对于不同簇之间进行距离度量,并取其平均值作为不同簇之间的距离。具体来说,组外连接采用的是类平均法(between-groups linkage)。
类平均法计算的是不同簇之间所有样本之间距离的平均值。即假设簇A和簇B各有n1和n2个样本,则计算A中每个样本与B中每个样本之间的距离,然后将这些距离求和并除以n1*n2得到不同簇之间的距离。
三、差别比较
组内连接和组外连接的计算方式不同,因此它们在聚类分析中的应用场景也不同。
组内连接主要应用于提高同一簇内样本之间的相似性,即将相似度较高的样本归为同一簇。最短距离法和平均距离法适合于样本分布比较密集的情况,而最长距离法则适合于样本分布比较稀疏的情况。
组外连接主要应用于不同簇之间的区分,即将相似度较低的样本划分到不同簇中。类平均法适合于样本分布比较均匀的情况。
需要注意的是,选择不同的连接方式会影响聚类结果的稳定性和可解释性,在
选择连接方式时需要根据实际问题和数据特点进行权衡。
此外,聚类分析还需要考虑其他方面的影响因素,如距离度量方法、聚类数目等。在选择距离度量方法时,需要根据数据类型和数据特点来选择,如欧氏距离适合于连续型数据,曼哈顿距离适合于分类变量等。而在确定聚类数目时,需要结合相关的统计指标(如轮廓系数、Calinski-Harabasz指数等)来评估聚类结果的质量,并选择最优的聚类数目。
总之,聚类分析是一种强大的数据分析方法,可以帮助我们发现数据中的潜在模式和规律。在使用SPSS进行聚类分析时,需要注意不同连接方式的计算方法和应用场景,并根据实际情况选择合适的参数组合以获得更加准确和可靠的聚类结果。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10