京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在进行机器学习建模时,我们通常需要将数据集分成训练集和测试集。这种做法能够帮助我们评估模型的性能,并检验模型是否过拟合或欠拟合。在SPSS中做二元logistic回归也不例外。
二元logistic回归是一种用来建立分类模型的方法,它可以处理二元响应变量(0或1)。如果你正在使用SPSS进行二元logistic回归,那么你需要先将数据集准备好。然后,按照以下步骤来划分训练集和测试集。
第一步:导入数据 在SPSS中,你需要首先导入你的数据集。你可以通过点击“文件”菜单下的“打开”选项来加载数据。另外,还可以通过复制粘贴等方式将数据集导入到SPSS中。
第二步:创建一个ID字段 为了确保每个观测值都被正确地分配到训练集或测试集中,你需要在数据集中添加一个唯一的标识符字段。该字段可以是任何类型,例如数字、字符等,并且必须包含唯一值。
第三步:随机划分训练集和测试集 在SPSS中,你可以使用“数据”菜单下的“拆分文件”选项来随机划分训练集和测试集。在“拆分文件”对话框中,你需要选择“分组变量”,并将ID字段拖放到该位置。然后,你需要选择将数据集拆分成多少份。例如,如果你想将数据集拆分为2份,则可以在“输出数据集”选项下选择“两部分”。
第四步:保存训练集和测试集 在拆分完数据集后,SPSS将会生成两个新的数据集。其中一个是训练集,另一个是测试集。你需要将这两个数据集保存到本地磁盘上。你可以使用“文件”菜单下的“保存”选项来保存数据集。
第五步:建立模型 现在,你已经准备好了训练集和测试集,可以开始建立二元logistic回归模型了。在SPSS中,你可以使用“回归”菜单下的“二元logistic回归”选项来建立模型。在该对话框中,你需要指定响应变量和自变量,并设置其他参数,例如阈值、迭代次数等。
第六步:评估模型性能 建立完模型后,你需要对其进行评估,以确保它具有良好的性能。在SPSS中,你可以使用“分类”菜单下的“交叉验证”选项来评估模型性能。该方法可以帮助你估计模型的准确性,并验证其是否具有过度拟合的问题。
总之,在SPSS中进行二元logistic回归时,你需要将数据集分成训练集和测试集。这样可以帮助你评估模型的性能,并检验模型是否过拟合或欠拟合。随机划分训练集和测试集是一种可靠的方法,可以帮助你获得更好的模型准确性。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20