京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SQL Server 提供了许多用于处理 JSON 数据的功能,其中之一是解析 JSON 数组。在此篇文章中,我将会介绍如何在 SQL Server 中解析 JSON 数组以及一些相关的注意事项。
JSON 数组的基本概念
JSON 数组是一种存储多个值的方式,每个值都可以是一个简单的类型(例如字符串、数字或布尔值)或者是一个复杂的类型(例如对象或其他数组)。JSON 数组由方括号 [] 包围,其中的值使用逗号分隔。
示例:
[ { "name": "John", "age": 30, "city": "New York" }, { "name": "Mary", "age": 25, "city": "Los Angeles" } ]
以上是一个包含两个对象的 JSON 数组,每个对象都有 name、age 和 city 三个属性。
SQL Server 如何解析 JSON 数组
SQL Server 提供了 OPENJSON 函数来解析 JSON 数据。通过这个函数,你可以将 JSON 数组转换成表格形式,每行代表一个数组元素,每列代表一个属性。
以下是 OPENJSON 函数的基本语法:
OPENJSON(json_expression[, path]) [WITH (property_name data_type [,...])]
示例:
DECLARE @json NVARCHAR(MAX) SET @json = '[{"name": "John","age": 30,"city": "New York"},{"name": "Mary","age": 25,"city": "Los Angeles"}]' SELECT * FROM OPENJSON(@json)
以上 SQL 查询将会返回以下结果:
+-----------+-------+-------------+
| key | value | type |
+-----------+-------+-------------+
| 0 | -- | 5 (= JSON_ARRAY)|
| [0].name | John | 1 (= JSON_STRING)|
| [0].age | 30 | 2 (= JSON_INT)|
| [0].city | New York | 1 (= JSON_STRING)|
| 1 | -- | 5 (= JSON_ARRAY)|
| [1].name | Mary | 1 (= JSON_STRING)|
| [1].age | 25 | 2 (= JSON_INT)|
| [1].city | Los Angeles | 1 (= JSON_STRING)|
+-----------+-------+-------------+
在上面的查询中,我们使用了 OPENJSON 函数来解析 JSON 数组,并且没有指定 path 参数。因此,整个 JSON 对象都被解析了。OPENJSON 函数返回了一个表格,其中每行代表一个数组元素,每列代表一个属性。具体来说,表格包含三列:
注意事项
在使用 OPENJSON 函数时,需要注意以下几点:
总结
SQL Server 提供了 OPENJSON 函数来解析 JSON 数据,可以将 JSON 数组转换成表格形式,方便后续的数据处理。在
使用 OPENJSON 函数时,需要注意传入的 JSON 数组必须是有效的 JSON 格式,并且如果数组中包含了对象数组,则需要使用嵌套的 OPENJSON 函数来解析。此外,OPENJSON 函数只能返回基本数据类型,如果要返回复杂数据类型,需要进行一些转换操作。
在处理多维数组时,可以使用 CROSS APPLY 子句来展开数组。以下是一个具有嵌套数组和对象的示例:
{ "name": "John", "age": 30, "hobbies": [ { "name": "reading", "level": 3 }, { "name": "swimming", "level": 2 } ] }
我们可以使用如下 SQL 查询来解析该 JSON 对象:
DECLARE @json NVARCHAR(MAX) SET @json = '{"name": "John","age": 30,"hobbies": [{"name": "reading", "level": 3}, {"name": "swimming", "level": 2}]}' SELECT name, age, hobby_name, hobby_level FROM OPENJSON(@json) WITH (
name VARCHAR(50),
age INT,
hobbies NVARCHAR(MAX) AS JSON
) AS person CROSS APPLY OPENJSON(person.hobbies) WITH (
hobby_name VARCHAR(50),
hobby_level INT );
以上 SQL 查询将会返回以下结果:
+------+-----+------------+-------------+ | name | age | hobby_name | hobby_level | +------+-----+------------+-------------+ | John | 30 | reading | 3 | | John | 30 | swimming | 2 | +------+-----+------------+-------------+
在查询中,我们使用了 CROSS APPLY 子句来展开 hobbies 数组,并用嵌套的 WITH 子句来解析数组中的对象。最终得到包含两列的结果集,其中每行代表一个 hobby 兴趣。
结论
在 SQL Server 中,可以使用 OPENJSON 函数来解析 JSON 数组。通过将 JSON 数组转换为表格形式,可以方便地进行后续的数据处理。在使用 OPENJSON 函数时,需要注意传入的 JSON 数组必须是有效的 JSON 格式,并且如果数组中包含了对象数组,则需要使用嵌套的 OPENJSON 函数来解析。此外,在处理多维数组时,可以使用 CROSS APPLY 子句来展开数组。
推荐学习书籍
《**CDA一级教材**》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12