京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 NumPy 中,可以使用 np.squeeze() 函数来删除值为 1 的维度。本文将详细介绍 np.squeeze() 函数的用法和示例。
np.squeeze() 函数?np.squeeze() 函数是 NumPy 库中的一个函数,用于从数组的形状中删除单维条目。如果将一个数组作为参数传递给 np.squeeze(),则该函数将返回一个新数组,其中所有维度为 1 的轴都被删除。此外,如果您希望只删除特定的维度,请在 np.squeeze() 函数的第二个参数中指定要删除的维度。
np.squeeze() 函数的语法np.squeeze() 函数的语法如下所示:
numpy.squeeze(arr, axis=None)
其中:
arr:需要压缩的数组。axis:默认为 None,表示删除所有维度为 1 的轴,也可以指定要删除的特定轴。np.squeeze() 函数的示例现在,让我们通过一些示例来了解 np.squeeze() 函数的使用。
假设有一个形状为 (1, 2, 1, 3) 的数组。使用 np.squeeze() 函数可以从数组中删除维度为 1 的轴,并返回形状为 (2, 3) 的新数组。
import numpy as np
a = np.ones((1, 2, 1, 3))
b = np.squeeze(a)
print("Shape of a:", a.shape)
print("Shape of b:", b.shape)
输出:
Shape of a: (1, 2, 1, 3)
Shape of b: (2, 3)
在这个例子中,我们将仅删除第二维和第四维。
import numpy as np
a = np.ones((1, 2, 3, 1, 4))
b = np.squeeze(a, axis=(1, 3))
print("Shape of a:", a.shape)
print("Shape of b:", b.shape)
输出:
Shape of a: (1, 2, 3, 1, 4)
Shape of b: (1, 3, 4)
np.squeeze() 函数可以方便地删除数组中单维条目。您可以使用它来删除特定轴上的值为 1 的维度,也可以使用它来删除所有维度为 1 的轴。希望本文能够对您理解 np.squeeze() 函数有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20