京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 Pandas 中,NaN 表示空或缺失值。在数据分析中,经常需要计算 DataFrame 中每列的 NaN 值出现的次数。本文将介绍如何使用 Pandas 计算 DataFrame 中每列的 NaN 值出现的次数。
Pandas 是一个开源数据分析工具。它提供了一个称为“DataFrame”的数据结构,该结构类似于电子表格,可以用来存储和操作二维数据。在 Pandas DataFrame 中,NaN 表示空或缺失值。在实际的数据分析中,会经常遇到缺失值的情况,因此我们需要计算 DataFrame 中每列的 NaN 值出现的次数。
计算 DataFrame 中每列的 NaN 值数量非常简单。我们只需要使用 isna() 方法检测 DataFrame 中的 NaN 值,并使用 sum() 方法计算每列中 NaN 值的数量。以下是示例代码:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, np.nan],
'B': [4, np.nan, np.nan],
'C': [7, 8, 9]})
print(df.isna().sum())
上面的代码将创建一个包含三列的 Pandas DataFrame。然后使用 isna() 方法检查 DataFrame 中的 NaN 值,并使用 sum() 方法计算每列的 NaN 值的数量。输出结果如下:
A 1
B 2
C 0
dtype: int64
从输出结果可以看出,DataFrame 中的 NaN 值数量分别为 1、2 和 0。
如果需要计算每行的 NaN 值数量,可以使用 sum() 方法并设置 axis 参数为 1。以下是示例代码:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, np.nan],
'B': [4, np.nan, np.nan],
'C': [7, 8, 9]})
print(df.isna().sum(axis=1))
上面的代码将创建一个包含三列的 Pandas DataFrame。然后使用 isna() 方法检查 DataFrame 中的 NaN 值,并使用 sum() 方法计算每行的 NaN 值的数量。输出结果如下:
0 0
1 2
2 0
dtype: int64
从输出结果可以看出,DataFrame 中的每行的 NaN 值数量分别为 0、2 和 0。
在 Pandas 中计算 DataFrame 中每列或每行的 NaN 值数量非常简单。只需要使用 isna() 方法检查 DataFrame 中的 NaN 值,并使用 sum() 方法计算每列或每行的 NaN 值的数量。此外,还可以使用 dropna() 方法删除 DataFrame 中包含 NaN 值的行或列。掌握这些技巧可以使数据分析更加高效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27