
在 Pandas 中,NaN 表示空或缺失值。在数据分析中,经常需要计算 DataFrame 中每列的 NaN 值出现的次数。本文将介绍如何使用 Pandas 计算 DataFrame 中每列的 NaN 值出现的次数。
Pandas 是一个开源数据分析工具。它提供了一个称为“DataFrame”的数据结构,该结构类似于电子表格,可以用来存储和操作二维数据。在 Pandas DataFrame 中,NaN 表示空或缺失值。在实际的数据分析中,会经常遇到缺失值的情况,因此我们需要计算 DataFrame 中每列的 NaN 值出现的次数。
计算 DataFrame 中每列的 NaN 值数量非常简单。我们只需要使用 isna()
方法检测 DataFrame 中的 NaN 值,并使用 sum()
方法计算每列中 NaN 值的数量。以下是示例代码:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, np.nan],
'B': [4, np.nan, np.nan],
'C': [7, 8, 9]})
print(df.isna().sum())
上面的代码将创建一个包含三列的 Pandas DataFrame。然后使用 isna()
方法检查 DataFrame 中的 NaN 值,并使用 sum()
方法计算每列的 NaN 值的数量。输出结果如下:
A 1
B 2
C 0
dtype: int64
从输出结果可以看出,DataFrame 中的 NaN 值数量分别为 1、2 和 0。
如果需要计算每行的 NaN 值数量,可以使用 sum()
方法并设置 axis
参数为 1。以下是示例代码:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, np.nan],
'B': [4, np.nan, np.nan],
'C': [7, 8, 9]})
print(df.isna().sum(axis=1))
上面的代码将创建一个包含三列的 Pandas DataFrame。然后使用 isna()
方法检查 DataFrame 中的 NaN 值,并使用 sum()
方法计算每行的 NaN 值的数量。输出结果如下:
0 0
1 2
2 0
dtype: int64
从输出结果可以看出,DataFrame 中的每行的 NaN 值数量分别为 0、2 和 0。
在 Pandas 中计算 DataFrame 中每列或每行的 NaN 值数量非常简单。只需要使用 isna()
方法检查 DataFrame 中的 NaN 值,并使用 sum()
方法计算每列或每行的 NaN 值的数量。此外,还可以使用 dropna()
方法删除 DataFrame 中包含 NaN 值的行或列。掌握这些技巧可以使数据分析更加高效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14