京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在MySQL中,事务隔离级别和锁之间存在密切的关系。MySQL支持四种不同的事务隔离级别,分别是:未提交读(Read uncommitted)、提交读(Read committed)、可重复读(Repeatable read)和串行化(Serializable)。每种隔离级别都有不同的锁机制来确保事务的一致性和隔离性。
未提交读
在未提交读隔离级别下,一个事务可以读取另一个事务尚未提交的数据。这意味着,在该级别下,没有任何锁定机制来防止并发访问数据。因此,如果多个事务同时访问同一组数据,则可能会出现脏读(Dirty read)问题,即一个事务读取到了另一个事务还未提交的数据。
提交读
在提交读隔离级别下,一个事务只能读取另一个已经提交的事务所修改的数据。这个隔离级别提供了更高的一致性,但是可能会导致幻读(Phantom read)问题。幻读指的是,在一个事务内多次查询同一组数据时,由于其他事务插入了新数据,因此第二次查询将返回更新后的结果。
可重复读
在可重复读隔离级别下,一个事务在执行期间将看不到其他事务所做的任何更改,除非该事务自身已经提交。该隔离级别通过使用共享锁(Shared Lock)和排他锁(Exclusive Lock)来防止脏读和幻读问题。当一个事务获取了共享锁时,其他事务可以继续读取数据,但是不能修改该数据;当一个事务获取了排他锁时,其他事务无法读取或修改该数据。
串行化
在串行化隔离级别下,所有事务按照严格的先后顺序依次执行。这种隔离级别提供了最高的数据一致性,但是也会导致最低的并发性能。因为每个事务必须等待其他事务完成后才能开始执行。在该隔离级别下,MySQL会对所有读取和写入操作进行排他锁定,从而确保不会出现任何并发访问冲突。
总结
在MySQL中,事务隔离级别和锁机制密不可分。事务隔离级别定义了允许并发访问的程度,并指定了哪些锁应该用于保护数据。锁机制则确保在多个事务同时访问同一组数据时,数据的完整性和一致性得到保障。因此,在选择隔离级别时,需要权衡数据的一致性和性能需求,选择合适的级别和锁机制来确保系统的正确性和高效性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27