京公网安备 11010802034615号
经营许可证编号:京B2-20210330
requests和urllib.request是Python中两个常用的HTTP客户端库,它们都可以用来发送HTTP请求并处理响应。但是,它们之间也有一些重要的区别。
首先,requests是一个第三方库,而urllib.request是Python标准库的一部分。因此,使用requests需要先安装该库,而urllib.request则已经包含在Python中。当然,随着Python版本的不同,urllib.request的功能也会有所变化。
其次,在使用上,requests相对于urllib.request更加简单易用。requests提供了一系列的高级API,使得常见的HTTP请求操作变得十分容易。例如,发送一个GET请求只需要一行代码:response = requests.get(url)。同时,requests还支持自动解析JSON格式的响应、文件上传、会话管理等高级功能,让开发者能够更快速地完成复杂的HTTP请求操作。而urllib.request相对于requests就显得笨拙一些,需要较多的代码来实现相同的功能。
另外,requests提供了更加灵活的错误处理机制。当发生网络错误或服务器返回错误状态码时,requests会抛出相应的异常,如ConnectionError、Timeout等,方便开发者进行相应的处理。而在urllib.request中,需要通过捕获URLError异常来处理网络错误,并通过判断HTTP状态码来处理服务器返回的错误信息。
此外,requests的性能也比urllib.request更好。requests使用了基于urllib3的连接池技术,可以重用TCP连接,减少了请求响应的延迟和网络带宽的占用,并且对HTTPS的支持也更加完善。而urllib.request则需要每次发送请求都重新建立连接,相比之下性能较差。
最后,requests具有更广泛的社区支持和文档资料。由于requests易用性高、功能强大、性能优越,所以在Python开发者中拥有非常广泛的用户群体,因此相关的问题和解决方案也更容易找到。而urllib.request则相对来说受关注度较少,相关文档资料也比较匮乏。
综上所述,requests和urllib.request虽然都是Python中常用的HTTP客户端库,但是在使用上存在一些区别,开发者可以根据自己的需要灵活选择。如果只是简单地进行HTTP请求操作,或者需要与标准库紧密集成,那么urllib.request可以满足要求;如果需要高级功能、更好的性能和灵活的错误处理,或者需要更广泛的社区支持,那么建议选择requests。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24