京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		卷积神经网络(Convolutional Neural Network,简称CNN)是一种常用的深度学习模型,可以处理图像、语音和自然语言等高维数据。CNN中的反向传播算法是训练模型的关键步骤之一,本文将对CNN反向传播算法进行详细解释。
一、前向传播
CNN的前向传播过程包括卷积、池化和全连接等操作。假设输入为一个大小为 $W times H$ 的图像,其中 $W$ 和 $H$ 分别表示宽度和高度,通道数为 $C$ 。卷积层由多个卷积核组成,每个卷积核可以提取不同特征。在卷积操作中,卷积核从左到右、从上到下扫描输入图像,并通过点积操作计算每个位置的输出值。池化层可以缩小特征图的尺寸并减少参数数量,常见的池化方式有最大池化和平均池化。全连接层将前面卷积和池化操作后的特征图展开并输入到全连接神经网络中,得到最终的分类结果。
二、反向传播
反向传播过程是为了优化模型参数,使其能够更好地分类数据。假设 CNN 的损失函数为 $L$ ,参数为 $theta$ ,则反向传播算法的目标是通过梯度下降法最小化损失函数 $L$ 。
首先,计算损失函数对输出层的影响。假设 CNN 的最后一层是一个全连接层,输出结果为 $y_{i}$ ,其中 $i$ 表示分类的类别。损失函数对输出结果的导数可以表示为:
$$frac{partial L}{partial y_i}$$
然后,计算输出层对前一层的影响。假设输出层的前一层是一个全连接层,第 $j$ 个神经元的输出为 $z_j$ ,其权重为 $w_{ij}$ 。则损失函数对该神经元的输入 $z_j$ 的导数可以表示为:
$$frac{partial L}{partial z_j}=sum_i frac{partial L}{partial y_i}frac{partial y_i}{partial z_j}=frac{partial L}{partial y_j}frac{partial y_j}{partial z_j}+sum_{ineq j}frac{partial L}{partial y_i}frac{partial y_i}{partial z_j}$$
其中,
$$frac{partial y_i}{partial z_j} = w_{ij}$$
接下来,计算前一层对当前层的影响。假设前一层是一个池化层,其输出结果为 $x_k$ ,则损失函数对输入 $z_j$ 的导数可以表示为:
$$frac{partial L}{partial x_k}=sum_j frac{partial L}{partial z_j}frac{partial z_j}{partial x_k}$$
其中,
$$frac{partial z_j}{partial x_k}=begin{cases}w_{jk}, &text{x}_ktext{在与神经元 }jtext{ 相关的感受野内} , &text{otherwise}end{cases}$$
最后,根据反向传播算法,可以计算出每个参数 $theta_i$ 的梯度 $frac{partial L}{partial theta_i}$ 。这些梯度将用于更新模型参数。
三、总结
综上所
述,CNN反向传播算法的步骤可以概括为以下几个:
计算损失函数对输出层的影响 $frac{partial L}{partial y_i}$ 。
计算输出层对前一层的影响 $frac{partial L}{partial z_j}$ 。
计算前一层对当前层的影响 $frac{partial L}{partial x_k}$ 。
根据梯度下降法计算每个参数的梯度 $frac{partial L}{partial theta_i}$,并更新模型参数。
CNN反向传播算法的优点是能够在大规模数据集上训练深度神经网络,并且通常比传统的机器学习算法具有更好的性能。但是,该算法需要消耗大量的计算资源和内存空间,因此需要使用GPU等高效计算工具来加速运算。
总之,CNN反向传播算法是训练深度神经网络的重要算法之一,通过对输入和输出之间的误差进行反向传播,不断调整模型参数以逐步提高模型性能。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28