
Matplotlib是Python中最流行的数据可视化库之一,它提供了许多绘图工具和函数,可以创建各种类型的图形。其中包括网格线(Grid)功能,可以在图形上添加水平和垂直线条以辅助读取数据。但默认情况下,网格线会覆盖数据点和线条,这可能会使图像难以阅读。本文将介绍如何使用Matplotlib让grid网格线处于图像底部。
Matplotlib图形中的每个元素都有一个zorder属性,该属性控制元素在图形中的层数。具有更高zorder值的元素位于具有较低zorder值的元素之上。默认情况下,网格线的zorder值为1,因此它们位于其他元素的顶部。要将它们移动到底部,可以将其zorder属性设置为0或更低的值。例如:
import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) ax.grid(True, zorder=0) plt.show()
在此示例中,我们创建一个基本的折线图并启用网格线。ax.grid(True)命令将在图形中显示网格线,默认情况下zorder值为1。我们在此命令中将zorder属性设置为0,以便网格线位于其他元素之下。最后,使用plt.show()函数显示图形。
另一种将网格线移动到底部的方法是使用set_axisbelow函数。该函数可用于设置轴线(包括网格线)在图像上的层数。默认情况下,轴线位于所有其他元素的顶部。以下是一个示例:
import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) ax.grid(True) ax.set_axisbelow(True) plt.show()
在此示例中,我们创建了与前面相同的折线图,并在轴对象上启用了网格线。然后,我们使用ax.set_axisbelow(True)命令将轴线置于其他元素之下。最后,使用plt.show()函数显示图形。
我们还可以使用Matplotlib的rcParams全局设置将所有图形的网格线移动到底部。rcParams是一个字典对象,它存储了Matplotlib的默认参数和配置选项。使用rcParams,可以在不影响代码中的单个图形的情况下更改Matplotlib的全局行为。以下是一个示例:
import matplotlib.pyplot as plt
plt.rcParams['axes.axisbelow'] = True
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [4, 5, 6])
ax.grid(True)
plt.show()
在此示例中,我们使用plt.rcParams['axes.axisbelow'] = True命令将axes.axisbelow参数设置为True。这告诉Matplotlib将所有轴线置于其他元素之下,包括网格线。然后我们创建了一个基本的折线图并启用了网格线。最后,使用plt.show()函数显示图形。
在Matplotlib中,有多种方法可以将网格线移动到图像底部。我们可以设置网格线的zorder属性、使用set_axisbelow函数或通过rcParams全局设置更改Matplotlib的默认行为。无论哪种方法,它们都能提高图形的可读性,并使数据更易于解读。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29