
Seaborn是一种Python可视化库,它是在matplotlib基础之上构建的。与matplotlib相比,Seaborn具有更高的美学和更简单的语法。当我们使用Seaborn时,可能会遇到需要同时显示多个图片的情况,这篇文章将介绍如何在Seaborn中实现这一目标。
最常用的方法是使用subplot函数。subplot函数允许我们在一个图中显示多个子图。下面是一个例子:
import seaborn as sns
import matplotlib.pyplot as plt
# 创建两个数据集
data1 = sns.load_dataset('diamonds')
data2 = sns.load_dataset('tips')
# 创建第一个子图
plt.subplot(2, 1, 1)
sns.scatterplot(x='carat', y='price', data=data1)
# 创建第二个子图
plt.subplot(2, 1, 2)
sns.violinplot(x='day', y='tip', data=data2)
# 显示图像
plt.show()
在这个例子中,我们首先加载了两个数据集(diamonds和tips),然后使用subplot函数创建了两个子图。第一个子图使用scatterplot绘制了一个散点图,第二个子图使用violinplot绘制了一个小提琴图。最后,我们调用show函数来显示图像。subplot函数的前两个参数指定了网格的行和列数,第三个参数指定了当前子图的位置。
另一种方法是使用gridplot函数。gridplot函数允许我们在一个网格中显示多个子图。下面是一个例子:
import seaborn as sns
import matplotlib.pyplot as plt
from bokeh.layouts import gridplot
from bokeh.io import show
# 创建两个数据集
data1 = sns.load_dataset('diamonds')
data2 = sns.load_dataset('tips')
# 创建第一个子图
p1 = sns.scatterplot(x='carat', y='price', data=data1)
# 创建第二个子图
p2 = sns.violinplot(x='day', y='tip', data=data2)
# 创建网格布局
grid = [[p1], [p2]]
# 显示图像
show(gridplot(grid))
在这个例子中,我们首先加载了两个数据集(diamonds和tips),然后使用scatterplot和violinplot分别创建了两个子图。接下来,我们使用gridplot函数创建了一个网格布局,将这两个子图放在了网格中。最后,我们调用show函数来显示图像。
总结起来,Seaborn提供了多种方法来同时显示多个图片,其中subplot和gridplot是最常用的两种方法。无论你选择哪种方法,都可以轻松地将多个Seaborn图形组合在一起,并展示出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28