京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在R语言中,可以使用多种方法将两个时间序列画在同一张图上。这篇文章将介绍其中两种常用的方法:基本的plot()函数和ggplot2包。
plot()函数是R中最基本的可视化函数之一,它可以用于绘制各种类型的图表,包括时间序列图。下面是一个简单的例子,展示如何使用plot()函数将两个时间序列画在同一张图上:
# 生成两个时间序列数据 set.seed(123) ts1 <- cumsum(rnorm(100)) ts2 <- ts1 + rnorm(100) # 绘制时间序列图 plot(ts1, type = "l", col = "red", xlab = "时间", ylab = "值") lines(ts2, col = "blue") legend("topleft", legend = c("ts1", "ts2"), lty = 1, col = c("red", "blue"))
在这个例子中,我们首先生成了两个随机的时间序列数据,然后使用plot()函数绘制了第一个时间序列(红色),并使用lines()函数添加了第二个时间序列(蓝色)。最后,使用legend()函数添加了一个图例,以便区分不同的时间序列。
这种方法非常简单,适用于简单的时间序列图。但是,当需要更多的控制、更复杂的图形或更多的注释时,建议使用ggplot2包。
ggplot2是一个强大的可视化包,它提供了高度定制化的图形功能。下面是一个例子,展示如何使用ggplot2绘制两个时间序列图:
# 加载ggplot2包 library(ggplot2) # 生成两个时间序列数据 set.seed(123) df <- data.frame(time = 1:100, ts1 = cumsum(rnorm(100)), ts2 = cumsum(rnorm(100)) + rnorm(100)) # 绘制时间序列图 ggplot(df, aes(x = time)) + geom_line(aes(y = ts1, color = "ts1")) + geom_line(aes(y = ts2, color = "ts2")) + labs(x = "时间", y = "值", color = "") + scale_color_manual(values = c("ts1" = "red", "ts2" = "blue"))
在这个例子中,我们首先加载ggplot2包,并生成了两个随机的时间序列数据,并将它们存储在一个数据框中。然后,我们使用ggplot()函数来创建一个空白的图层,并使用geom_line()函数分别添加两个时间序列。注意,我们使用aes()函数来指定x轴和y轴变量,并使用color参数对两个时间序列进行标记。接下来,我们使用labs()函数添加x轴和y轴标签,并使用scale_color_manual()函数手动设置颜色的映射关系。
ggplot2提供了非常灵活的方式来调整图形,包括添加注释、修改坐标轴和排版等。这里只是介绍了很小一部分功能,读者可以参考ggplot2的文档和示例来进一步学习。
总结:
本文介绍了如何使用plot()函数和ggplot2包在R语言中将两个时间序列画在同一张图上。两种方法都有各自的优缺点,可以根据实际需要选择合适的方法。如果只需要简单的时间序列图,可以使用plot()函数;如果需要更多的控制和定制化,建议使用ggplot2包。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20