京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在R语言中,可以使用多种方法将两个时间序列画在同一张图上。这篇文章将介绍其中两种常用的方法:基本的plot()函数和ggplot2包。
plot()函数是R中最基本的可视化函数之一,它可以用于绘制各种类型的图表,包括时间序列图。下面是一个简单的例子,展示如何使用plot()函数将两个时间序列画在同一张图上:
# 生成两个时间序列数据 set.seed(123) ts1 <- cumsum(rnorm(100)) ts2 <- ts1 + rnorm(100) # 绘制时间序列图 plot(ts1, type = "l", col = "red", xlab = "时间", ylab = "值") lines(ts2, col = "blue") legend("topleft", legend = c("ts1", "ts2"), lty = 1, col = c("red", "blue"))
在这个例子中,我们首先生成了两个随机的时间序列数据,然后使用plot()函数绘制了第一个时间序列(红色),并使用lines()函数添加了第二个时间序列(蓝色)。最后,使用legend()函数添加了一个图例,以便区分不同的时间序列。
这种方法非常简单,适用于简单的时间序列图。但是,当需要更多的控制、更复杂的图形或更多的注释时,建议使用ggplot2包。
ggplot2是一个强大的可视化包,它提供了高度定制化的图形功能。下面是一个例子,展示如何使用ggplot2绘制两个时间序列图:
# 加载ggplot2包 library(ggplot2) # 生成两个时间序列数据 set.seed(123) df <- data.frame(time = 1:100, ts1 = cumsum(rnorm(100)), ts2 = cumsum(rnorm(100)) + rnorm(100)) # 绘制时间序列图 ggplot(df, aes(x = time)) + geom_line(aes(y = ts1, color = "ts1")) + geom_line(aes(y = ts2, color = "ts2")) + labs(x = "时间", y = "值", color = "") + scale_color_manual(values = c("ts1" = "red", "ts2" = "blue"))
在这个例子中,我们首先加载ggplot2包,并生成了两个随机的时间序列数据,并将它们存储在一个数据框中。然后,我们使用ggplot()函数来创建一个空白的图层,并使用geom_line()函数分别添加两个时间序列。注意,我们使用aes()函数来指定x轴和y轴变量,并使用color参数对两个时间序列进行标记。接下来,我们使用labs()函数添加x轴和y轴标签,并使用scale_color_manual()函数手动设置颜色的映射关系。
ggplot2提供了非常灵活的方式来调整图形,包括添加注释、修改坐标轴和排版等。这里只是介绍了很小一部分功能,读者可以参考ggplot2的文档和示例来进一步学习。
总结:
本文介绍了如何使用plot()函数和ggplot2包在R语言中将两个时间序列画在同一张图上。两种方法都有各自的优缺点,可以根据实际需要选择合适的方法。如果只需要简单的时间序列图,可以使用plot()函数;如果需要更多的控制和定制化,建议使用ggplot2包。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01