
PyTorch 是一种非常流行的深度学习框架,但是它不太适合在嵌入式系统和实时部署上使用,因为它在计算上的速度相对较慢。为了加速 PyTorch 模型的推理,可以使用 NVIDIA 的 TensorRT 库。TensorRT 旨在优化深度学习模型的推理,并提供了一个 API,可以将训练好的模型转换为 TensorRT 可以优化的格式。
本文将介绍如何将 PyTorch 模型转换为 TensorRT 格式,并使用 C++ 代码来加载和运行优化的模型。
在开始之前,您需要安装以下软件:
确保将这些软件正确安装并配置。
首先,需要将 PyTorch 模型转换为 ONNX 格式。ONNX 是一种开放式神经网络交换格式,可以使模型在不同框架之间移植。对于本示例,我们将使用 ResNet18 模型演示如何将其转换为 ONNX 格式。
import torch
import torchvision.models as models
# 加载模型
model = models.resnet18(pretrained=True)
model.eval()
# 创建一个虚拟输入张量
x = torch.randn(1, 3, 224, 224)
# 将模型转换为 ONNX 格式
torch.onnx.export(model, x, "resnet18.onnx", opset_version=11)
torch.onnx.export
函数将模型及其输入张量作为输入,并将其导出到指定的文件中。在此示例中,我们将该文件命名为 resnet18.onnx
。
接下来,我们将使用 TensorRT 转换器将 ONNX 模型转换为 TensorRT 格式。TensorRT 提供了一个用于转换 ONNX 模型的 Python API。
import tensorrt as trt
import onnx
# 加载 ONNX 模型
onnx_model = onnx.load("resnet18.onnx")
# 创建 TensorRT 引擎
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
# 解析 ONNX 模型
parser.parse(onnx_model.SerializeToString())
# 配置构建器
builder.max_batch_size = 1
builder.max_workspace_size = 1 << 30
# 构建引擎
engine = builder.build_cuda_engine(network)
# 保存 TensorRT 引擎
with open("resnet18.engine", "wb") as f:
f.write(engine.serialize())
在此示例中,我们首先加载 ONNX 模型,然后创建一个 TensorRT 构建器和网络。接下来,我们使用 TensorRT 的 ONNX 解析器解析 ONNX 模型。一旦解析完毕,我们就可以使用构建器构建引擎。最后,我们将引擎序列化并保存到磁盘上。
现在,我们已经将 PyTorch 模型转换为 TensorRT 格式并保存了 TensorRT 引擎。接下来,我们需要使用 C++ 代码加载并运行优化的模型。
以下是加载引擎并运行推理的简单示例:
#include
#include
#include "NvInfer.h"
using namespace nvinfer1;
int main()
{
// 读取 TensorRT
引擎
std::ifstream engineFile("resnet18.engine", std::ios::binary);
engineFile.seekg(0, engineFile.end);
int modelSize = engineFile.tellg();
engineFile.seekg(0, engineFile.beg);
std::vector
// 创建 TensorRT 的执行上下文
IRuntime* runtime = createInferRuntime(gLogger);
ICudaEngine* engine = runtime->deserializeCudaEngine(engineData.data(), modelSize);
IExecutionContext* context = engine->createExecutionContext();
// 创建输入和输出张量
const int batchSize = 1;
const int inputChannel = 3;
const int inputHeight = 224;
const int inputWidth = 224;
const int outputClass = 1000;
float inputData[batchSize * inputChannel * inputHeight * inputWidth];
float outputData[batchSize * outputClass];
// 设置输入数据
// ...
// 执行推理
void* bindings[] = {inputData, outputData};
context->execute(batchSize, bindings);
// 处理输出数据
// ...
// 清理内存
// ...
}
在此示例中,我们首先读取之前保存的 TensorRT 引擎。然后,我们使用 TensorRT 的运行时 API 创建一个执行上下文,并从引擎中创建一个 CUDA 引擎对象。
接下来,我们设置输入和输出张量,并将输入数据传递给模型。最后,我们使用执行上下文执行推理,并处理输出数据。
## 总结
在本文中,我们介绍了如何使用 TensorRT 将 PyTorch 模型转换为优化的 TensorRT 格式,并使用 C++ 代码加载和运行优化的模型。这种方法可以加速深度学习模型的推理速度,并使它们更适合于嵌入式系统和实时部署。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27